Thursday, December 24, 2009

Main-Tie-Main


Load Configuration.
Both Bus#1 & Bus#2 are supplying normal loads that mean interruption for PT1 or PT2 is accepted for fault located between M2-PT2 and main supply.
No critical load (instantaneous interruption is not allowed) connected on Bus #1 and Bus #2. It shall be supplied from UPS.
Load on Bus #1 has a standby load on Bus#2 or vice versa, so if the bus #2 fail, load on bus #1 is operated.
Basic Operation.
This diagram may be useful for our discussion. The basic M1-T-M2 configuration is shown. During normal operation M1 & M2 breakers are closed and tie breaker T is opened. Supply coming from PT-1 and PT-2.
This drawing indicate when M2 open, T and M1 CBs are closed (abnormal condition). This condition is done for maintenance purpose for equipment located between M2 to upstream (main source). Load transfer from bus #2 to bus #1 can be carried out without interruption done by ATS scheme.
If fault located on bus #2 to tie breaker T or bus #1 to tie breaker T, load transfer is prohibited by ATS scheme. But for fault located from M2 to upstream load transfer is allowed with deenergizing bus #2 loads first, then tie-breaker T closed by ATS scheme. Loads may be in service after this tranfer, if the loads is set in auto position.
We cannot maintain the supply on fault bus (e.g. bus #2 or bus #1) before correction is made.
A redundant bus tie or switch isolator acting as maintenance bypass to ATS operation.
Based on discussion above, I do not know, where we have to install those equipment to maintain supply for fault on respectively bus.
Normally Closed Tie Breaker Operation.
It is possible to operate tie breaker in closed position, but we have to consider a short-circuit level on that bus. By calculation (Short-circuit study), a fault on bus #1 or bus #2 the magnitude become double. So, we have to ensure the equipment s.c. rating (buse, breakers, feeder loads, feeder breakers, and etc) meet the requirements for tie-in in closed position.
Note:
Temporary closing three breakers for maintenance purpose is allowed within 3 cycles to 1 (one) second is accepted.
Relay application.
1). Bus differential for bus#1 and bus #2 may be applied (we apply on 4.16 kV systems).
2). Directional relay may be applied on incoming breaker M1 & M2 if the NC for tie breaker T is applied.
3). Restrictive earth fault is applied for transformer with low resistance grounding.
4). Please consider to provide better coordination for instantaneous relay between incoming breaker and load breakers as well as ground fault protection.
5). Syncheck relay is required for synchronising bus # & bus #2 before closing tie breaker T. We provide permissive closed for ATS schecme. ATS can only be operated if the upstream system is in synchronising condition (Generating buses are in remote but located closed to each other).
Conclusions.
1). We cannot maintain load on bus faulted before repairing is made.
2). I do not know the location for instaling redudant bus tie breaker or isolator to prevent faulted bus total failure.
3). Comprehensive study shall be caried out to operate tie breaker in NC. Especially in selecting electrical equipment and relay coordination.
4). Pay more attention on safety aspect in establishing the ATS scheme.

Tuesday, December 1, 2009

DAYA DARURAT

1. PILOSOFI DAYA DARURAT
Sistem daya darurat (emergency power system) terdiri dari sistem daya pasokan khusus (essential) dan pasokan daya kritis (critical).
Pasokan daya normal merupakan pasokan daya yang digunakan pada saat kondisi operasi normal. Pasokan normal diperoleh dari pusat pembangkit daya utama melalui sistem distribusi nya. Pada operasi normal semua pengguna menerima daya baik secara langsung ataupun tidak langsung, misalnya melalui trafo penurun tegangan, UPS atau penyearah dan pasokan daya normal lainnya.
Pasokan daya khusus merupakan pasokan daya yang digunakan ketika pasokan daya normal tidak tersedia, dan diperoleh dari pembangkit darurat. Pengguna daya khusus pada fasilitas yang tidak mempunyai generator darurat dipasok dari pasokan daya khusus dari fasilitas yang berdekatan.
Pengguna daya khusus, biasanya diperlukan untuk sistem penunjang kegiatan kehidupan seperti keselamatan manusia dan peralatan, penghentian operasi (shutdown) peralatan secara aman dan terkontrol dan untuk operasi awal (black start-up) dari fasilitas. Pengguna khusus harus mempunyai ketahanan terhadap pemutusan pasokan yang singkat tanpa mempunyai pengaruh negatif terhadap sistem. Daftar lengkap pengguna khusus seperti diperlihatkan uraian berikutnya.
Proses pemulihan setelah pemadaman total (electrical black start) merupakan prosedur yang diterapkan untuk memulihkan daya normal secara aman dan terkontrol, ketika terjadi kehilangan daya AC ke seluruh fasilitas kilang.
Pasokan daya kritis diperoleh dari batere penyimpan yang didistribusikan ke beban kritis baik sebagai UPS AC maupun UPS DC dari sistem UPS. Fungsi pasokan daya kritis adalah menyediakan pasokan daya yang paling andal untuk pengguna kritis.
Beban pengguna kritis merupakan beban-beban yang diperlukan untuk pengoperasian sistem keselamatan dan membantu mengarahkan jalan penyelamatan diri dari anjungan (platform) atau kilang. Pengguna daya listrik kritis tidak dapat menerima adanya pemutusan pasokan daya, meskipun untuk waktu yang sangat singkat. Pengguna kritis biasanya terdiri dari sistem ESD (emergency shutdown) dan PCS, sistem telekomunikasi, sistem kontrol, sistem kontrol listrik, dan unit control panel (UCP). Perhatikan daftar pengguna kritis pada penjelasan pasokan daya khusus
Waktu autonomi (autonomy time) merupakan waktu perkiraan di mana daya kritis dirancang untuk tetap beroperasi secara bebas dari pasokan daya khusus. Waktu autnomi dapat diterapkan untuk suatu pasokan daya kritis secara keseluruhan, atau dapat diterapkan untuk pengguna kritis individu. Waktu autonomi akan menjadi minimum sesuai dengan persyaratan statutory dan persyaratan yang didefinisikan pada pilosofi instrumen dan telekomunikasi.

2. PASOKAN DAYA KHUSUS
Daya khusus didistribusikan pada frekwensi tertent misalnya 60 Hz atau 50 hz, 3 fasa dengan 4 kawat dengan tegangan tertentu pula, 208V 3-fasa 4-kawat. Pengguna khusus yang memerlukan tegangan lain, maka pemakai harus mempunyai sistem pengubah tegangan sendiri, sistem konversi untuk menghasilkan pasokan tersebut, mereka memerlukan pasokan dari daya khusus.
Setiap fasilitas agar dielngkapi dengan sebuah essential ( khusus), yang berfungsi memasok konsumen khusus tersebut. Untuk suatu fasilitas yang hanya mempunyai sebuah tegangan rendah tunggal, disarankan agar dielgkapi dengan bagian bus khusus yang terpisah yang dapat dihubungkan melalui pemutus tenaga penghubung (Tie-Breaker)..
Untuk LNG Tangguh, empat buah generator diesel darurat ditempatkan didaerah utility. Masing-masing keluaran generator darurat dihubungkan ke bus darurat 6.9 kV yang sesuai dengan keluaran generator darurat tersebut.
Pengguna daya khusus seperti:

Sistem Penunjang Kehidupan
1. Produksi dan distribusi air minum
2. Sistem buangan
3. Fasilitas pengobatan
4. Fasilitas dapur dan masak
5. Penyulang beban kritis
6. Penerangan khusus (essential lighting)

Keselamatan Pekerja dan Peralatan
7. Crane dan utilitasnya
8. Tali keselamatan dan pengisi battere
9. Sistem ventilasi dan tekanan
10.Penghentian yang aman dan terkontrol
11. Buangan pompa hazard.
12. Sistem penyalaan flare
13. Ventilasi enclosure turbin.
14. Kipas pendingin minyak pelumas

Black Start System
15. Utlitas untuk pengembalian ke Normal
16. Kompresor Udara Instrumen dan utility
17. Pengasutan pemanas bahan bakar gas

Lain-lain
18. Pompa Joki Pemadam Kebakaran
3. SISTEM DAYA KHUSUS
Untuk pengembangan proyek Kilang Minyak dan Gas biasanya dilengkapi dengan generator darurat (EDG) yang jumlahnya tergantung pada jumlah kebutuhan daya yang diperlukan untuk start-up sebuah Generator utama dan memenuhi kebutuhan sistem utilitas air dan udara.
Pembangkit khusus (essential ) biasanya dirancang menggunakan rel tunggal dengan dua pemutus tenaga pengisian (incomer breaker) dan sebuah pemutus tenaga penghubung (tie breaker). Salah satu pemutus tenaga (breaker) pengisian dihubung ke pasokan normal, pada saat operasi normal posisi pemutus tenaga ini dalam keadaan tertutup. Pemutus tenaga pengisian kedua dihubung ke rel (bus) darurat atau langsung ke generator darurat jika sistem tidak dilengkapi dengan rel darurat (emergency bus).
Sistem daya khusus lainnya jika ada merupakan bagian rel dari tegangan menengah atau tegangan rendah yang mempunyai sumber EDG yang dihubung ke bagian rel normal melalui pemutus tenaga penghubung (tie breaker) yang tertutup pada saat operasi normal. Dalam keadaan normal EDG tidak dioperasikan kecuali untuk tujuan pengujian berkala.
Untuk kondisi pasokan daya normal pada rel khusus (essential bus) terputus, pembangkit darurat secara otomatis akan beroperasi dan memasok rel khusus.
Persyaratan generator darurat beroperasi adalah
1). Pasokan normal sudah tidak ada
2). Pemutus tenaga pasokan normal sudah terbuka
3). Tidak ada gangguan pada rel (bus) yang kehilangan pasokan dayanya.
4). Pemutus tenaga penghubung dalam keadaan terbuka.
Jika keempat persyaratan tersebut sudah dipenuhi, pemutus daya darurat tertutup secara otomatis untuk mencatu rel khusus yang sudah tidak mempunyai pasokan listrik lagi.
Untuk fasilitas yang tidak dilengkapi pasokan daya darurat, kehilangan pasokan daya normal pada rel khusus, pemutus tenaga penghubung akan menutup dan memasok daya dari bus normal lainnya secara otomatis dengan persyaratan pemutus tenaga incomer sudah terbuka dan tidak ada gangguan pada bus normal yang kehilangan pasokan.
Pengendalian khusus dilakukan setelah operasi otomatis. Namun kembali ke operaqsi normal harus dilakukan secara manual yang dilengkapai dengan prosedur pengoperasian cermat agar menjamin kejadian sistem mesin darurat (generator) tidak dibebani berlebihan.
Sistem distribusi pasokan daya khusus agar dirancang mampu beroperasi yang tidak tergantung dari pasokan daya normal secara keseluruhan, dan untuk mengurangi mode kegagalan total dari pasokan daya normal ataupun pasokan daya darurat.

4. PASOKAN DAYA KRITIS
Batere cadangan pada sistem UPS AC maupun DC dimaksudkan untuk menanggulangi beban-beban kritis yang memerlukan pasokan tak terputus pada saat pembangkit darurat tidak beroperasi atau terjadi pemadaman total.
Untuk meningkatkan keandalan dan ketersediaan sistem pengisian (charger) ganda agar dipasok dari dua titik pengisian, sebuah pengisian menerima pasokan normal dan sebuah lagi dari pasokan daya pasokan khusus.
Pasokan daya kritis diharapkan tidak terputus akibat terjadinya kehilangan pasokan normal atau pasokan darurat.
Semua pengguna kritis yang dibutuhkan pada keadaan darurat untuk menjaga keamanan manusia dan peralatan, dan tidak menerima pemutusan pasokan walaupun singkat. Pengguna kritis juga termasuk sistem yang membutuhkan operasi setelah pasokan daya khusus padam.
Batere mengizinkan pengguna kritis berfungsi selama waktu yang telah ditentukan dalam rancangan tanpa pemutusan setelah pasokan daya khusus terputus.
Pasokan daya kritis menggunakan batere Valve regulated, sealed lead acid (VRLA). Batere dapat dipasang dalam kabinet yang memenuhi standar rancangan, atau dipasang pada rak-rak yang terbuka. Terminal batere dan sambungannya dilindungi terhadap kontak langsung.
Ruang batere berventilasi tidak diperlukan. Setiap batere bank akan dipasang pada daerah dengan rating isolator untuk melengkapi fasilitas untuk mentripkan batere dari sistem keamanan anjungan.
List di bawah ini merupakan batasan nilai dan informasi yang diterapkan pada kilang yang mempunyai anjungan lepas pantai. Sistem batere dirancang untuk waktu autonomi seperti pada daftar berikut ini.
Autonomi batere pengguna kritis
1. Fire & Gas safety systems, 45 minutes
2. Shutdown & Process Control Systems (ESD & PCS), 45 minutes
3. Electrical control systems, 45 minutes
4. Gas Turbine Compressor UCP, 45 minutes
5. Telecommunications systems, 45 minutes
6. Business Automation Systems (IT systems), 45 minutes
7. Switchgear tripping and closing supplies, 2 hours
8. Emergency Generator starting and control
9. Gas Turbine Lube oil pumps, 2 hrs (Note 3)
10. Fire Pump Starting and Control, (Notes 1 & 2)
11. Marine Navigation aids systems, 96 hrs (Note 4)
12. Helicopter landing area perimeter and obstacle lighting,
13. Escape Route Lighting (self contained with integral battery), 1.5 hours
14. Exit Lighting (self contained with integral battery), 3 hours
Note :
1. Generator yang digerakkan oleh mesin diesel dan pompa pemadam kebakaran akan mempunyai sistem batere yang mempunyai kemampuan pengasutan mesin, lamanya waktu pasokan tidak diperhitungkan.
2. Sistem batere yang disediakan biasanya merupakan bagian dari sistem paket pengadaan generator darurat. Batere tersebut ditempatkan pada skid yang dilengkapi dengan pengisi (charger) batere yang dipasok dari switchboard khusus.
3. Pada saat kejadian paparan gas yang terditeksi sistem ESD, semua batere UPS (kecuali navigation aids) akan berhenti memasok daya listrik.
4. Peralatan Marine Navigation Aids dirancang untuk beroperasi kontinyu pada Zone 1, meskipun adanya gas telah terdeteksi sistem ESD.
Item 1 sampai 4 pada daftar di atas merupakan contoh beban kritis yang dipasok dari sistem UPS yang merupakan bagian dari paket Generator Gas Turbin.
Item-item 5 dan 6 yang dipasok dari sistem UPS komunikasi.
Item 7 sampai 12 merupakan beban-beban kritis dari sistem UPS yang termasuk dalam satu paket pengadaan peralatan tertentu.
Penempatan pasokan daya kritis termasuk juga sistem distribusinya akan ditempatkan pada lokasi yang khusus yang tingkat sistem keamanannya cukup tinggi terhadap adanya bahaya kebakaran, resiko ledakan, dan bahaya dari lingkungannya.

5. DISTRIBUSI PASOKAN DAYA KRITIS
Sistem UPS AC utama di beberapa lokasi dapat dipisah menjadi dua kategori.
· Sistem UPS AC utama yang diperuntukan untuk menunjang proses produksi, utilitas, fire and gas dan sistem control lainnya.
· Sistem UPS Telekomunikasi seperti untuk VSAT, PA/GA dan lainnya.
Sistem UPS AC utama di bagian proses dan bagian lainnya digabungkan, .
Setiap sistem UPS agar mempunyai dua set UPS yang bebas termasuk juga peralatan distribusinya yaitu dan peralatan distribusi UPS A dan UPS B. Masing-masing sistem agar ditentukan ukurannya sekitar 110% dari total beban rata-rata semua beban kritis yang terhubung. Dua sistem UPS (A dan B) beroperasi secara normal dalam keadaan sinkron, namun demikian semua perlengkapan dirancang untuk beroperasi tanpa sinkron.
Umumnya, kebanyakan pengguna kritis mampu menerima dua pasokan daya terpisah, misalnya seperti: UPS A dan UPS-B untuk sistem UPS redundant dengan pasokan daya juga redundant. Dengan menerapkan sistem yang seperti ini kemungkinan kegagalan total dari salah satu UPS dan sistem distribusinya tidak akan menyebabkan terputusnya pasokan daya pada pengguna kritis.
Sistem distribusi untuk UPS AC utama terdiri dari sejumlah switchboard distribusi. Switchboard sistem distribusi menerima pasokan penyulang distribusi UPS utama yang merupakan bagian dari UPS.
Sistem ESD (Emergency Shutdown System) mempunyai hubungan dengan sistem pasokan daya kritis pada kondisi sebagai berikut :
· Untuk load shedding penyulang, di mana UPS memasok peralatan dengan autonomi yang berbeda.
· Untuk pemutusan batere pada final waktu autonomi terlama, atau pada penditeksi kebakaran/api atau gas yang mudah terbakar yang berdekatan dengan peralatan.
Pasokan daya kritis agar juga termasuk UPS AC dan DC dan bagian distribusi yang diperlukan.

6. SISTEM UPS AC.
Sistem UPS akan memberikan pemindahan daya tanpa pemutusan pada kejadian pemadaman pasokan daya normal.
Sistem UPS AC agar dirancang sesuai dengan spesifikasi untuk sistem daya tidak terputus (AC Uninterruptible Power System).
Sistem UPS AC beroperasi dengan menkonversikan pasokan arus bolak-balik (AC) ke arus searah (DC), dan mengembalikan arus searah (DC) menjadi kembali arus bolak-balik (AC) yang selanjutnya akan didistribusikan ke pemakai beban kritis. Batere-batere biasanya diisi secara pengisian mengambang (float charge) dari konversi arus searah dari komponen UPS. Jika pasokan AC terputus, maka daya yang tersimpan dalam batere akan digunakan untuk memasok beban kritis AC setelah diubah menjadi AC yang dilakukan tanpa terjadi pemutusan.
Pasokan daya kritis sistem UPS AC terdiri dari penyearah (rectifier), batere bank, inverter AC dan distribusi daya utama dan pasokan alternatif dari sumber AC normal yang dilengkapi dengan stabilizer. Fasilitas bypass menggunakan saklar statik, yang secara otomatis memindahkan beban ke pasokan alternatif ketika keluaran inverter melampaui batas tegangan dan frekwensi yang telah ditentukan. Bypass maintenance dilakukan secara manual ke pasokan AC yang dilengkapi dengan stabilizer. Pasokan AC bypass diambil dari suatu pasokan beban normal dari sumber yang berbeda dengan yang diperuntukan untuk pasokan battere charger UPS.
Margin 50% agar diterapkan untuk kedua UPS dan batere pada saat rancangan final.
Keluaran dari sistem UPS AC utama agar 230V, 1ph, AC 50 Hz, dan agar fasa tunggal atau tiga fasa tergantung pada beban total yang diperlukan dan rekomendasi pemasok.
Batere UPS agar tidak ditempatkan dalam enclosure yang sama dengan perlengkapan daya dan kontrol elektronik. Persyaratan penapis harmonik agar dipertimbangkan dan disarankan oleh pemasok perlengkapan UPS.

7. SISTEM UPS DC.
Sistem UPS arus searah (DC) beroperasi dengan menyearahkan pasokan arus bolak-balik (AC) menjadi arus searah (DC) yang kemudian didistribusikan ke pengguna kritis. Pengisian batere adalah pengisian mengambang (float charge) yang bersumber dari keluaran penyearah. Ketika pasokan AC yang masuk ke Batere Charger UPS terputus, maka daya batere menjaga daya DC tanpa terjadi pemutusan untuk tetap memasok pengguna kritis.
Sistem UPS arus searah (DC) biasanya terdiri dari sebuah penyearah, batere bank dan panel distribusi. Beberapa sistem UPS DC mungkin memerlukan sejumlah tambahan seperti:
· Sistem distribusi terpadu.
· Pemantau batere, pengendali arus dan tegangan pengisian.
· Penyearah ganda atau redundant.
· Batere ganda atau redundant.
Perlu diperhatikan, bahwa batere tidak boleh ditempatkan di dalam enclosure bersama-sama dengan peralatan elektronik dan rangkaian kontrolnya.
Persyaratan untuk penapis harmonic agar dievaluasi dan dianjurkan oleh peralatan UPS.
Rancangan margin 50% agar diterapkan untuk kedua UPS pada saat dilakukan rancangan final.
Pasokan daya kritis yang memerlukan ikutan peralatan UPS DC termasuk :
· Motor pengasut generator diesel darurat dan Unit Control Panel (UCP).
· Motor pengasut pompa diesel pemadam kebakaran dan Unit Control Panel (UCP).
· Cadangan minyak pelumas dan kipas ventilasi gas turbin kompressor (tergantung pada persyaratan pemasok).
· Sistem bantuan navigasi laut (marine navigation aids).
· Lampu darurat dan lampu penunjuk penyelamatan/meloloskan diri.
Pasokan daya kritis untuk penerangan darurat agar diperoleh dengan menggunakan pencahayaan yang terintegrasi dengan batere yang ada.

8. REDUDANCY PERLENGKAPAN
Sistem Kelas A.
Sistem kelas A merupakan tingkat yang paling tinggi jika dilihat dari keamanan yang diperlukan. Sistem-sistem kelas A memerlukan dua batere bank, dua penyearah, dan dua inverter untuk sistem AC. Sistem distribusi kelas A biasanya terpisah secara listrik untuk sistem redundan.
Karena pentingnya memelihara dan menjaga sistem PCS, ESD, ESD, telekomunikasi, dan pengaman switchgear/fungsi control. Sistem-sistem ini pada kilang minyak dan gas dimasukan sebagai kelas A dengan dua batere bank, masing-masing mempunyai kemampuan kerja untuk beban kritis terpasang.
Sistem Kelas B.
Untuk sistem-sistem seperti alat bantu sistem navigasi dengan tingkat sekuriti lebih rendah dan keberadaan sistem bukan merupakan faktor yang kritis, maka sistem kelas B dengan sebuah penyearah (rectifier) dan sebuah batere bank dapat diterapkan.
Namun pada kondisi tertentu, sistem-sistem PCS, PSD dan ESD, telekomunikasi pada tempat tertentu dapat dimasukkan ke kelas B dengan pertimbangan bahwa sistem tersebut mampu memenuhi kapasitas sistem.

9. PEMISAH FISIK
Untuk menyediakan pasokan yang aman, sistem-sistem UPS jenis kelas A yang menunjang operasi sistem PCS (Process Control System), ESD (emergency shutdown system) dan sistem PSD/ESD, dan telekomunikasi agar dilakukan pemisahan lokasi penempatan antara rectifier/inverter dan batere bank yang cukup jauh. Demikian juga dengan penempatan kedua lokasi batere batere bank ersebut.
Pemisahan sistem distribusi dari pasokan daya juga dapat dilakukan antara sumber yang satu dengan yang lain, apabila salah satu pasokan terbakar tidak menyebabkan pasokan yang lainnya ikut terbakar.
10. BATERE.
Keluaran pemasok daya kritis agar disesuaikan dengan spesifikasi kebutuhan daya masukkan yang memenuhi persyaratan sistem konsumen. Kapasitas batere yang diperlukan dari setiap sistem UPS agar ditentukan berdasarkan:
· kVA beban total terhubung dari semua beban kritis.
· Waktu autonomi pengguna kritis atau profile beban sistem.
· Temperetur lingkungan untuk instalasi batere.
· Ditentukan oleh tegangan sel minimum pada final pelepasan (discharge).
· Dua puluh persen (20%) faktor penuaan (ageing factor) yang digunakan untuk perhitungan kapasitas umur batere.
Rangkaian listrik dari sistem batere agar dirancang tahan terhadap pengaruh panas dan mekanis dari arus hubung singkat di setiap bagian sistem batere sampai ke perlengkapan pengaman batere.
Pengisi batere (battery charger) dilengkapi dengan pengatur tegangan yang berfungsi untuk menjaga tegangan operasi/floating yang berfungsi dapat menghindari pengisian batere yang berlebihan, dan membatasi arus pengisian batere sebagaimana yang telah ditentukan pemasok.
Rancangan sistem ventilasi instalasi batere diharapkan mampu mencegah akumulasi hidrogen. Perhitungan dilakukan untuk menentukan perubahan hidrogen maksimum dan untuk menentukan kecukupan dari instalasi sistem ventilasi batere.
Pengisian dengan arus yang tinggi (high rate atau boost charging) tidak boleh dilakukan pada sistem batere VRLA.
Ruangan batere khusus tidak diberikan, batere dipasang pada switchroom atau ruang perlengkapan bersama-sama dengan penyearah, inverter dan peralatan distribusi.
Ruangan switchgear dan perlengkapan mengakomodasi sistem batere agar dijaga pada temperatur nominal sekitar 25 derajat C untuk mengoptimalkan umur dan unjuk kerja batere.
Semua sistem UPS dilengkapi dengan fasilitas untuk melakukan pengujian dalam keadaan on line dan pemantau keadaan (condition monitoring) tanpa memerlukan pemadaman pasokan ke pengguna kritis.
11. FIRE DAN GAS
a. Pasokan Daya Khusus
Generator darurat dan switchboard khusus (essential) agar dilindungi terhadap kejadian kebakaran dan pemaparan gas kejadian yang diakibatkan pelepasan gas kedaerah sekitarnya oleh sistem ESD anjungan (platform ESD Systems).
Generator darurat (emergency generator) dirancang agar tidak dapat dioperasikan jika gas detector mendeteksi adanya gas di sistem ventilasi atau pasokan udara pembakaran (combustion air supply). Generator dan enclosurenya agar dilengkapi dengan sistem pemadam pemadam kebakaran otomatis.
Sistem ESD agar dlengkapi dengan:
· Start inhibit dan penghentian darurat (emergency stop) terhadap generator darurat.
· Fasilitas untuk mengisolasi batere sehubungan terditeksinya api dan gas dalam ruangan.
Fasilitas yang berfungsi untuk menghentikan operasi dan mengisolasi generator secara remote perlu diberikan di main control room utama (MCR). Personal yang dapat melakukannya harus yang mempunyai otoritas khusus yang diizinkan untuk penghentian fasilitas secara total.
Pengasutan dan pengendalian batere dari generator darurat agar disolasikan oleh sistem ESD dalam skenario terditeksinya paparan gas didalam enclosure generator darurat.

b. Pasokan Daya Kritis
Semua sistem pasokan daya kritis (kecuali Marine Navigation Aids yang disertifikasikan sebagai operasi Zone 1) agar mempunyai fasilitas penghentian operasi dan pengisolasian secara listrik dengan menggunakan sinyal jarak jauh (remote) dari ruang kontrol utama (MCR). Tujuannya adalah untuk mengisolasi semua sumber-sumber potensial penyalaan (ignition) pada saat terjadinya penyebaran gas.
Pemutus tenaga (circuit breaker) yang berfungsi untuk mengisolasi pasokan batere agar dipasang di dalam enclosure jenis Exd, yang mampu memberikan pengisolasian yang aman dalam skenario kejadian adanya paparan gas yang diditeksi disekelilingnya.
Sistem kebakaran (fire) dan gas akan memberikan kondisi sebagai berikut:
· Menghentikan unit-unit UPS dan membuka (trip) pemutus tenaga batere dalam hal terditeksinya gas.
· Pemadaman beban pasokan tertentu ke pengguna kritis setelah waktu autonomi batere selama 45 menit terlampaui, maka beban kritis akan terputus pasokannya dan juga panel distribusi cadangan yang dipasok dari fasilitas UPS AC utama akan berhenti setelah 45 menit.
· Total penghentian operasi unit-unit UPS dan membuka pemutus tenaga batere setelah waktu operasi batere selesai.

Beban- Beban Listrik

1. Persyaratan Beban.
Secara keseluruhan, kebutuhan daya yang diperlukan proyek pembangunan kilang baru atau pengembangannya agar ditentukan sesuai dengan studi beban listrik kilang tersebut, termasuk daftar beban dari masing-masing fasilitas dan perhitungan harus dikonfirmasikan pada rancangan final (detail design).
Daftar beban listrik dikembangkan dengan menggunakan daftar peralatan mekanis (Mechanical Equipment List) sebagai acuan utama untuk beban-beban mekanis.
Beban pada kondisi operasi normal secara praktis tetap dengan perbedaan variasi harian dan musim. Namun demikian, beban paling tinggi yang akan terjadi pada musim panas menggambarkan kenaikan kerja pendingin dan beban-beban HVAC terhadap temperatur udara yang lebih tinggi.
Beban-beban diklasifikasikan sesuai dengan sifatnya seperti kontinyu (C = continue), terputus-putus (I = intermittent), dan standby (S). Beban-beban terputus-putus (intermittent) tergantung faktor siklus kerja yang dapat ditambahkan dengan beban kontinyu untuk mendapatkan beban rata-rata (average load).
Beban total dihitung berdasarkan beban rata-rata, beban maksimum, dan beban rancangan. Beban-beban listrik ditentukan berdasarkan rancangan konsep, dengan margin rancangan 25% di atas beban rata-rata dengan memasukan perubahan beban pada kerangka pemakai pada saat pengembangan rancangan guna mencapai perubahan diwaktu mendatang.
Pada tahap berikutnya dari rancangan final dapat menggunakan margin sebesar 10% untuk perubahan di masa yang akan datang.


2. Klasifikasi Pengguna.
Beban listrik diklasifikasikan sesuai dengan pelayanannya seperti: beban normal, beban khusus (essential), dan beban kritis.
Beban Normal – beban-beban yang berhubungan dengan produksi, di mana kehilangan pasokan ini tidak akan menciptakan suatu kondisi yang tidak aman atau menghasilkan kerusakkan pada peralatan. Beban-beban ini tidak mengalami perubahan pada kondisi operasi normal.
Beban-beban khusus (Essential) – beban-beban ini berhubungan dengan keselamatan manusia dan peralatan, walau demikian beban ini kemungkinan akan mengalami pemutusan singkat pada pasokannya tanpa merusak peralatan dan tidak menimbulkan gangguan pada keselamatan manusia yang terjadi pada saat pengoperasian awal generator darurat. Pada kondisi darurat, beban khusus menerima suplai dari generator darurat (emergency generator) yang mampu bertahan memasok daya sampai generator utama dapat dioperasikan atau sekurang-kurangnya generator darurat dapat dioperasikan selama 24 jam.
Beban-beban Kritis – beban kritis (critical loads) merupakan beban yang pasokan dayanya harus dijaga kontinuitasnya untuk mencegah terjadinya kondisi tidak aman. Biasanya, beban ini merupakan sistem kontrol proses produksi dan sistem keselamatan (safety), dan sistem telekomunikasi. Masing-masing beban tersebut biasanya dipasok melalui UPS AC atau DC dengan battere sebagai penyimpan daya cadangan dan mampu bekerja pada periode kerja tertentu. Waktu kerja dari konfigurasi batere ini biasanya ditentukan pada awal rancangan yaitu berkisar antara 30 menit sampai 60 menit. Waktu tersebut diperlukan untuk mengoperasikan peralatan instrument dan control sebelum generator darurat dapat dioperasikan.
Beban-beban bukan listrik – beban-beban yang digerakkan oleh penggerak listrik seperti penggerak pneumatic dan hydraulic perlu diperhitungkan. Beban-beban ini dapat termasuk dalam daftar beban sebagai suatu acuan.


3. Konsumsi pengguna daya
Untuk perhitungan kapasitas motor listrik penggerak pompa, efisiensi yang digunakan agar mempertimbangkan efisiensi penggerak dan yang digerakkannya. Konsumsi daya listrik ditentukan dari daya poros terpakai (absorbed shaft power) pada titik operasi proses normal dibagi dengan motor efisiensi.
Semua beban-beban, efisiensi dan faktor daya yang digunakan pada studi ini adalah merupakan perkiraan dengan menggunakan peralatan yang sejenis yang telah ditentukan. Nilai-nilai efisiensi motor dan faktor daya diambil dari data katalog standard produsen motor tertentu yang sesuai dengan kerangka persetujuan pasokan motor dari proyek serupa terdahulu. Hal yang sama juga dilakukan terhadap tidak tersedianya data informasi rancangan dan data beban yang tidak melibatkan proses produksi.


4. Kasus-kasus beban listrik.
Didalam beberapa kasus beban listrik ditentukan dengan cara berikut ini:
Beban rata-rata (average load) – Situasi pada saat operasi normal dan merupakan pembebanan rata-rata didasarkan pada operasi beban kontinyu dan beban terputus-putus.
Beban maksimum (Maximum Load) – Beban ini ditentukan dari beban normal ditambah 125% beban tambahan di mana beban cadangan yang paling besar sedang dioperasikan.
Beban rancangan (Design Load) – Beban ini ditentukan dari beban normal dengan penerapan rancangan (Design) yang diizinkan ditambah beban tambahan di mana beban cadangan terbesar sedang beroperasi.
Beban-beban di atas, bersama-sama dengan detail operasi dari beban individu terbesar yang digunakan untuk menentukan sifat keseluruhan beban dan persyaratan pembangkit daya. Secara umum, pasokan daya harus sesuai dengan beban rancangan, sama seperti setiap perubahan beban peralihan (transient) yang digabung ke pemakai tertentu (specific customer).


5. Persyaratan Beban/Kapasitor Perbaikan Faktor daya.
Semua komponen-komponen listrik pembangkit dan distribusi agar ditentukan kapasitasnya untuk menentukan rancangan beban seperti berikut ini.
Kapasitor perbaikan faktor daya agar dipasang pada switchboard tegangan menengah dan pada semua switchboard/motor control center tegangan rendah, hanya jika diperlukan untuk menjaga faktor daya sistem keseluruhan kilang minimum 0.85 terbelakang (lagging) untuk mengurangi mengurangi penurunan tegangan reaktif, dan rugi-rugi daya.
Umumnya kapasitor perbaikan faktor daya tidak diperlukan pada industri yang mempunya pembangkit sendiri, karena pengaturan daya reactive dilakukan dengan menaikan atau menurunkan tegangan generator tersebut.
Multi-step switch (sekurang-kurangnya 4 langkah/step) otomatis yang dirancang untuk memperbaiki faktor daya dengan mengatur jumlah kapasitor yang terhubung ke sistem yang dipasang pada masing-masing switchboard tegangan rendah.
Kapasitor perbaikan daya agar disuplai dengan reaktor air-core dan RVT (Residual Voltage Transformer) untuk membatasi arus inrush (inrush current) dan untuk menekan harmonis yang agar dioperasikan melalui unit vakum kontaktor lain yang cocok. MV capacitor banks agar dipilih jenis pasangan luar.
Kapasitor perbaikan faktor daya agar mempunyai rugi-rugi yang rendah, metal enclosed, jenis hermetic sealed. Semua unit-unit kapasitor agar mempunyai proteksi sikring masing-masing.
Kapasitor tegangan menengah agar dilengkapi dengan konfigurasi hubungan bintang (star) jumlah minimum 4 buah unit fasa tunggal yang dipasang paralel perfasa. Sistem insulation agar dirancang tahan terhadap tegangan lebih kontinyu senilai 110% dari tegangan normal.

Monday, November 30, 2009

Pengendalian Mutu Untuk Persiapan Startup


1. Pendahuluan.

1.1. U m u m.
Tujuan pengendalian mutu peralatan listrik pada tahap akhir penyelesaian konstruksi dan siap dioperasikan adalah dimaksudkan untuk menjamin bahwa peralatan beserta perlengkapan ikutan lainnya telah dipasang sesuai dengan spesifikasi, gambar, persyaratan keselamatan dan kebutuhan pengoperasian.
Sebetulnya tugas pengendalian mutu ini merupakan tanggung jawab kontraktor, namun untuk menghindari pekerjaan yang berulang yang biasanya dilakukan pada saat commissioning sehubungan dengan kemungkinan adanya keraguan dari hasil pekerjaan kontraktor. Keraguan yang yang timbul biasanya disebabkan oleh beberapa hal seperti:
a. Prosedur pengendalian mutu yang diusulkan kontraktor tidak lengkap atau tidak sesuai dengan teknik-teknik atau prosedure yang spesifik.
b. Peralatan uji yang dipunyai kontraktor sangat terbatas, sehingga jenis pengendalian mutu tertentu tidak dapat dilaksanakan.
c. Jumlah tenaga akhli kontraktor sangat terbatas.
d. Menganggap bahwa pengujian yang dilakukan pabrik pembuat sudah memenuhi syarat untuk tidak dilakukan pengujian dilapangan lagi.
Meskipun seandainya kontraktor dapat memenuhi ke empat faktor di atas, User sebagai pihak yang akan mengoperasikan peralatan tersebut merasa perlu untuk mengikuti proses pengendalian mutu tersebut. Dapat tidaknya User mengikuti pekerjaan tersebut sangat tergantung pada keputusan pihak-pihak yang terlibat (Owner, Kontraktor dan User Manajemen).

1.2. Organisasi.
Dengan disetujuinya User turut serta dalam proses pengendalian kualitas, maka persiapan untuk menunjang pekerjaan tersebut perlu dilakukan antara lain dengan;
- membentuk team pengendalian mutu.
- menyiapkan peralatan penguji dan inspeksi.
- menentukan tanggung jawab bagi masing-masing anggauta team.
- menyiapkan spesifikasi dan prosedur yang berhubungan dengan tugas pengujian dan penilikan.
Langkah pertama dari team pengendali mutu ini adalah mengumpulkan informasi yang berhubungan dengan tugas pengendalian mutu, antara lain seperti meninjau prosedur yang diajukan kontraktor dan membandingkannya dengan prosedur yang dimiliki User, serta dibandingkan dengan standard yang berlaku seperti PUIL, NEC, IEEE, JIS, VDE dan lain-lain sesuai dari mana peralatan tersebut di beli.
Selain itu juga team harus yakin bahwa semua peralatan uji yang dimiliki kontraktor sudah ditera oleh badan atau lembaga yang berwenang untuk itu misalnya (KIM-Puspiptek untuk peralatan instrumentasi, dan LMK-PLN untuk peralatan uji listrik.

1.3. Metode dan prosedur pengujian.
Berdasarkan pengalaman pengendalian mutu terhadap peralatan listrik dalam rangka persiapan pengoperasian kilang, ada beberapa permasalah yang dijumpai yang pada umumnya selalu berulang kejadiannya, sebagai contoh:
- Kontraktor umumnya membeli peralatan listrik tidak dari satu tempat dan pada pemasangan secara lengkap biasanya akan dijumpai kesalahan rangkaian yang secara fisik kelihatan baik tetapi secara teoritis maupun praktis hal itu tidak memenuhi persyaratan.
- Umumnya peralatan listrik tidak langsung menunjukkan kesalahan tersebut pada saat mula dioperasikan.
- Penanganan yang kurang baik pada saat pengangkutan dan penyimpanan dapat menyebabkan timbulnya penyimpangan karakteristik peralatan listrik.
Dengan melihat ketiga hal di atas maka perlu peralatan yang akan dioperasikan agar diuji kembali sesuai dengan metode dan prosedur pengujian dilapangan.

2. Tugas Utama Team Kendali Mutu.
2.1. Data peralatan Listrik.
Untuk menghindari adanya peralatan listrik yang terlupakan, maka perlu team mendata peralatan-peralatan listrik yang akan diuji. Karena terlampau banyak peralatan tersebut maka team dianjurkan untuk membuat daftar prioritas. Peralatan tertentu seperti:
- Switchgear dan Motor Control Center.
- Generator dan Panel control.
- Motor Listrik dan sistem kendalinya.
- Transformator dan alat-alat bantunya.
- Kabel dan pemasangannya.
- Sistem pentanahan dan elektrodenya.
- Rele-rele pengaman dan sistem koordinasinya.
- Batere, pengisi batere (battery charger) dan UPS.
- Panel pengendali beban.
- Kabel tray, konduit, fitting dan sebagainya.
Kemudian sebagai langkah berikutnya maka dikumpulkan data seperti :
- Data teknis.
- Petunjuk pengoperasian dan pemeliharaan.
- Daftar suku cadang.
- Gambar yang dikeluarkan pabrik.
- Gambar yang dikeluarkan kontraktor.
- Hasil pengujian yang dikeluarkan pabrik.
- Prosedur dan metode pengendalian mutu.
- Peralatan pengendalian kualitas.
- Standar dan spesifikasi pengujian lapangan.
Selanjutnya ketua team mencari data anggauta team yang yang mempunyai keahlian dalam bidang pengendalian mutu yang sesuai dengan peralatan yang akan diamati.


2.2. Jenis Metode dan Prosedur Pengujian.
Sebagai ketua team diharapkan mempunyai keakhlian dalam bidang ini. Umumnya prosedur dan metode pengujian selalu berpijak pada ketentuan pabrik atau standar yang berlaku, namun tidak semua pedoman pengendalian mutu yang dilaksanakan di pabrik dilakukan lagi dilapangan, hanya pengendalian mutu tertentu saja yang dianjurkan untuk dilakukan. Pada umumnya jenis pengujian yang dilakukan pada peralatan listrik adalah sebagai berikut :
a. Pengujian isolasi.
b. Pengujian karakteristik kerja.
c. Pengujian tahanan elektrode sistem pentanahan.
d. Pengujian fungsi kerja.
e. Penilikan dengan menggunakan infra red.


2.2.1. Pengujian Isolasi.
Isolasi dapat berbentuk bahan dielektrik cair, padat atau gas yang berfungsi untuk mencegah aliran listrik antara titik-titik yang berbeda potensial. Pengujian isolasi dilakukan untuk menentukan integritas dari media isolasi. Pengujian biasanya dilakukan dengan menerapkan tegangan tinggi pada contoh yang diuji dan menentukan arus bocor yang mengalir pada saat pengujian tersebut. Kebocoran aliran arus yang berlebihan menunjukkan kondisi penurunan kemampuan atau gangguan dari isolasi. Pengujian isolasi dapat dilakukan dengan menerapkan tegangan arus searah (DC) atau arus bolak-balik (AC).
Pengujian isolasi dapat dikatagorikan sebagai pengujian yang tidak merusak (non destructive testing) dan pengujian merusak (destructive testing). Pengujian merusak dapat menyebabkan perlengkapan yang diuji rusak atau tidak dapat dioperasikan lagi. Pengujian tidak merusak dilakukan pada tegangan yang lebih rendah, dan peralatan yang diuji jarang sekali rusak.
Pengujian tegangan tinggi arus bolak-balik adalah suatu pengujian go atau no go. Tegangan dinaikkan pada tingkat tertentu, jika peralatan gagal atau menunjukan arus bocor yang berlebihan peralatan yang diuji tidak dapat digunakan lagi. Jenis pengujian ini hanya dapat menunjukkan apakah peralatan baik atau rusak. Pengujian ini tidak menunjukkan batas pengujian yang telah dilakukan, kecuali jika dinginkan lain.
Pengujian tegangan tinggi arus searah dapat menunjukkan kelebihan dari pengujian tegangan tinggi arus bolak-balik antara lain pengujian ini dapat memperlihatkan bahwa peralatan tersebut baik pada saat pengujian dan gagal dikemudian hari. Pengujian arus searah dilakukan untuk mendapatkan informasi mengenai arus bocor yang diukur pada saat tertentu dibandingkan dengan arus bocor yang diperoleh dari pengujian terdahulu.
Pengujian isolasi termasuk juga pengujian tahanan isolasi yang terdiri dari pengujian Dielectric Absorption, Polarization Index dan pengujian tegangan tinggi. Pengujian ini biasanya diterapkan pada peralatan listrik tegangan menengah (4.1kV keatas). Untuk peralatan tegangan rendah (1kV ke bawah) biasanya hanya dilakukan dengan megger.


2.2.2. Pengujian Karakteristik Kerja.
Pengujian disini dilakukan untuk mengetahui apakah karakteristik tertentu dari peralatan yang di uji memenuhi design dan spesifikasi yang diharapkan. Jenis pengujian antara satu alat dengan alat listrik lainnya umumnya berbeda. Perhatikan contoh berikut ini:
- Pengujian kurva kejenuhan dari trafo arus.
- Pengujian perbandingan dan polaritas trafo arus dan trafo tegangan.
- Pengujian kurva waktu arus dari rele pengaman.
- Pengujian kurva waktu-arus pemutus tenaga tegangan rendah.
- Pengujian kurva waktu-arus overload heater.

Untuk melakukan pengujian sebagaimana tersebut di atas diperlukan alat-alat uji dan keahlian mengenai alat yang diuji dan peralatan penguji.


2.2.3. Pengujian Tahanan Elektrode Pentanahan.
Integritas dari suatu sistem pentanahan adalah sangat penting pada sistem tenaga listrik, antara lain dimaksudkan untuk :
- Menentukan titik acuan potential tegangan untuk keselamatan peralatan dan personal.
- Untuk memberikan suatu titik pelepasan gelombang berjalan sehubungan adanya surja petir atau surja hubung.
- Mencegah tegangan tinggi yang berlebihan sehubungan adanya teganagn induksi dari sistem tegangan tinggi.


2.2.4. Pengujian Fungsi Kerja.
Yang paling menonjol memerlukan pengujian jenis ini adalah mengenai sistem kontrol dan sistem proteksi. Dengan melakukan pengujian ini akan terbukti bahwa rangkaian kontrol sudah terpasang dengan baik atau tidak. Pengujian dilakukan dengan cara simulasi.
Pengujian fungsi kerja pada rangkaian kontrol dapat dilakukan dengan menutup atau membuka suatu kontak dengan harapan sistem akan berfungsi sebagai mana yang diharapkan.
Sedangkan pengujian fungsi kerja rangkaian proteksi, meter-meter dan peralatan instrumentasi lainnya dilakukan dengan menggunakan injeksi tegangan atau arus menurut prosedur tertentu. Misalnya besar dan arah arus tertentu. Diharapkan bahwa peralatan dapat beroperasi sesuai dengan rancangan yang dibuat.
Dengan melakukan pengujian ini diharapkan sistem tidak akan gagal bekerja karena kesalahan instalasi dari rangkaian kontrol dan rangkaian proteksi pada suatu pengoperasian tertentu. Untuk pengujian rangkaian proteksi diperlukan keakhlian khusus.
Sebagai bahan pembanding mengenai prosedur pengujian yang diusulkan kontraktor, maka dapat digunakan prosedur yang ada pada lampiran I. Perlu diketahui bahwa prosedur ini merupakan gabungan dan revisi dari beberapa prosedur yang diterapkan di User dalam rangka commissioning projek seperti Train sebelumnya, perbaikan sistem kelistrikan User. Namun yang perlu diperhatikan adalah mengenai alat-alat baru yang belum tercakup pada prosedur dan juga perbaikan yang disesuaikan dengan kemajuan teknik dalam bidang pengendalian kualitas.


2.2.5. Inspeksi Peralatan Listrik.
Inspeksi mempunyai dua tujuan yaitu : (1) menentukan kondisi atau keandalan dari peralatan dan (2) menentukan tindak lanjut dari hasil inspeksi tersebut. Mengenai inspeksi ini ada dua kondisi dari peralatan listrik yang mempengaruhi tindakan penilikan, yaitu :
Penilikan peralatan yang tidak dioperasikan biasanya agar dilakukan sebelum dan sesudah peralatan dibersihkan. Kondisi yang perlu diperhatikan disini antara lain adanya debu, papan nama yang memberikan informasi mengenai peralatan, kemungkinan adanya bagian yang retak, bagian yang bocor, bagian yang berkarat, isolasi yang terkelupas dan lain sebagainya.
Kondisi penilikan peralatan yang ssedang dioperasikan. Disini biasanya indera manusia mengambil peranan penting, baik dalam hal membaca hasil pengukuran, mendengar bunyi yang tidak normal, mencium bau yang tidak wajar, atau untuk hal tertentu dapat merasakan panas yang berlebihan. Untuk menditeksi panas mungkin saja bisa menggunakan alat bantu infra red scanner.


2.3. Jadwal Pengendalian Mutu.
Seperti telah disebutkan dimuka bahwa pekerjaan pengendalian ini merupakan tugas kontraktor, maka jadwal pelaksanaan tugas ini ada dua alternative yaitu : (1) bersama-sama dengan kontraktor dan (2) setelah kontraktor menyelesaikan tugasnya. Pada prakteknya kedua cara tersebut dapat digunakan. Namun untuk menghindari pengujian yang sama dilakukan dua kali (pertama dilakukan kontraktor dan yang kedua dilakukan USER) maka sebagian besar dilakukan bersama-sama. Oleh sebab itu jadwal pengendalian mutu sangat tergantung sekali pada jadwal yang dibuat kontraktor.
Sebetulnya yang paling baik adalah melakukan pekerjaan tersebut bersama-sama dan ini sudah dibuktikan pada saat konstruksi train sebelumnya. Namun kendala yang dihadapi pada waktu itu adalah keterbatasan peralatan uji dari kontraktor di mana User yang melakukan pengujian dengan menggunakan peralatan yang dipunyai User, antara lain mengenai pengujian pergeseran sudut dari suatu sistem proteksi, baik yang menyangkut arus dan tegangan. Demikian juga dengan peningkatan kemampuan dielektrik minyak trafo.


2.4. Perlengkapan Pengendalian Mutu.
Peralatan yang dimaksud disini adalah alat-alat uji seperti yang digunakan untuk pengujian peralatan listrik tegangan tinggi maupun tegangan rendah. Karena tugas ini merupakan tugas kontraktor, maka kontraktor bertanggung jawab bahwa peralatan ujinya sudah memenuhi syarat dan ini dibuktikan dengan surat dari pihak atau lembaga yang berwenang. Hal ini dimaksudkan untuk mencegah hasil pengujian yang tidak sesuai. Peralatan yang harus dipunyai kontraktor antara lain :
- Hi-Pot tester (DC-60kV).
- Megger 5 kV
- SSR-51 atau SSR-78 (alat penguji rele).
- Phase angle meter.
- Alat penginjeksi arus.
- High Potential Stick.
- Alat penguji batere charger dan batere, terutama untuk pengujian discharge test batere.
- Alat untuk treatment minyak trafo.
- Alat penguji minyak trafo.
- Alat penguji trafo arus (CTER-Multiamp).
- Alat pengukur hubungan kekuatan kontak (microohm tester).
- dan lain-lain.

Pengalaman menunjukkan beberapa peralatan seperti tersebut diatas tidak dipunyai kontraktor.

2.5. Catatan.
Program pengendalian mutu tidak akan berhasil dengan baik apabila segi-segi administrasi dilupakan, misalnya mengenai pencatatan dan penyimpanan data hasil pengamatan. Untuk maksud tersebut biasanya dalam pelaksanaan program pengendalian digunakan formulir-formulir yang sesuai dengan pengamatan yang dilakukan. Hal yang perlu diperhatikan dan harus ada pada formulir tersebut antara lain mengenai :
- Waktu (time) : date, time of day, and year.
- Personel : nama orang yang melakukan pengujian, pengamat dari Owner dan pengamat dari User.
- Kondisi lingkungan seperti temperatur, kelembaban, cuaca dan lain-lain.
- Identifikasi peralatan misalnya seperti tag number, serial number dan lain-lain.
- Daftar pengecekan (check list): formulir tersebut menyebutkan peralatan yang digunakan, hasil pengamatan dan lain-lain.
- Komentar : Formulir catatan harus selalu diberikan ruangan untuk menulis tindakan lebih lanjut yang diperlukan, atau hal-hal yang dianggap menyimpang dari hasil pengamatan.
Saat ini cara diatas sudah tidak dilakukan lagi, karena berbagai faktor, utamanya kontrak an skedul kerja. Semua pekerjaan dilakukan kontraktor dan kita terima bersih. Penulis merasakan fungsi yang sangat baik pada saat melakukan kegiatan seperti tersebut di atas.

Name Plate Motor


Name plate motor memberikan banyak pilihan mengenai data rancangan dan unjuk kerja motor. Informasi ini khususnya sangat berharga bagi pemasang dan orang-orang yang bertugas dalam pemeliharaan/perawatan dan pengoperasian motor tersebut. Pada saat instalasi, pemeliharaan atau penggantian, informasi yang ada pada name plate sangat vital sekali untuk mempercepat dan melakukan pekerjaan yang sesuai.
Publikasi NEMA MG-1, section 10.38, menentukan bahwa data berikut ini harus ditempel kan pada setiap nameplate motor.

1. Manufacturer
2. Type
3. Frame
5. Time Rating
4. Horse Power
6. Ambient Temperature
8. Frequency
7. RPM
9. Phases
11. Voltage
10. Rated Load Amps
12. Locked Rotor Code Letter
13. Design Letter
14. Service Factor
15. Insulation Class

Selain dari itu, pembuat motor dapat memasukkan data seperti nama perusahaan dan lokasi plant manufacturer dan indentifikasi.
Sebagian besar data yang diberikan pada name plate mengacu pada karakteristik elektrik dari motor. Oleh sebab itu, nameplate itu sangat diperlukan oleh pemasang (installer), pemelihara seperti teknisi dan engineer. Untuk lebih memahami data ini, dua bentuk name plate di ilustrasikan disini. Pembicaraan berikut ini memberikan penjelasan dari notasi yang tidak tertulis.

1. Serial Number
Serial number ini merupakan nomor individual, yang dibuat unique untuk motor itu sendiri atau rancangan untuk identifikasi yang diperlukan untuk berkomunikasi dengan pabrik pembuat (Manufacture).

2. Type
Adalah kombinasi dari hurup dan atau nomor yang dipilih oleh manufaturer (pabrikan), guna memudahkan mengidentifikasi jenis enclosure dan modifikasi yang berarti.

3. Model Number
Tambahan data identifikasi untuk pabrikan.

4. Horse Power
Nominal horse power adalah horse power yang dirancang utuk memberikan daya melalui porosnya dengan frekwensi dan tegangan nominal pada terminal motor, pada service factor sama dengan 1,0.

5. Frame
Tanda frame size mengidentifikasi dimensi dari motor. Jika NEMA frame, identifikasi ini menunjukan dimensi pasangan (mounting), sehingga gambar dimensi dari manufacture tidak diperlukan lagi.

6. Service Factor
Kebanyakan service factor motor adalah 1 atau 1.15. Jika safety factor sama dengan 1.0, ini berarti bahwa motor tidak boleh dioperasikan untuk memberikan horsepower lebih besar dari yang diperlihatkan nameplate, jika kerusakan pada sistem isolasi lilitan perlu dihindari.
Untuk safety factor 1.15, motor dapat dioperasikan pada horse power sama dengan horse power nominal dikalikan service factor tanpa menyebabkan kerusakan yang serius pada sistem isolasi lilitan stator motor. Namun perlu dipertimbangkan pengoperasian secara terus menerus pada kondisi ini akan menyebabkan umur isolasi yang diharapkan akan semakin pendek.

7. AMPS
Arus yang dapat ditarik dari motor pada tegangan dan frekwensi nominal dengan horse power nominal yang di kirim ke beban.

8. VOLTS
Tegangan yang dirancang agar motor dapat bekerja baik. Tegangan ini merupakan tegangan yang diukur pada terminal motor, bukan tegangan pada titik pengiriman.

9. Kelas isolasi (Insulation Class).
Kelas material isolasi yang digunakan pada lilitan stator ditentukan disain. Material-material ini telah diuji secara ekstensif terhadap suhu tertentu. Kelas B isolasi mempunyai suhu kerja maksimum 130°C. Kelas F isolasi 155°C dan kelas H pada 180°C.

10. RPM (Rotation Per Minute)
RPM adalah kecepatan putaran poros (output shaft) pada saat memberikan horse power nominal pada alat yang digerakkan pada tegangan dan frekwensi nominal yang diterapkan pada terminal motor.

11. Hertz
Herts adalah frekwensi dari sistem suplai untuk mana motor tersebut dirancang. Motor dapat dioperasikan pada frekwensi lain, tetapi penampilan kerja akan berubah. Misalnya motor 60 Hz jika diterapkan pada sistem 50 Hz akan menyebabkan motor tersebut panas dan suaranya berdengung.

12. Duty
Apakah “Intermittent” atau “Continous” ditempel pada ruangan ini. Jika “Continous”, ini berarti bahwa motor dapat dioperasikan 24 jam/hari, 365 hari/tahun untuk beberapa tahun.
Jika “Intermittent” interval waktu akan diperlihatkan ini berarti bahwa motor dapat beroperasi pada beban penuh untuk interval waktu yang diberikan.

13. Temperature Ambient.
Hal ini menentukan maksimum ambient suhu, pada °C dimana motor dapat memberikan horse powernya secara aman. Jika ambient suhu lebih tinggi dari harga yang ditempelkan pada name plate, motor output harus dikurangi untuk mencegah kegagalan pada isolasi sistem.

14. PHASE
Phase menunjukkan jumlah fasa untuk mana motor dirancang. Phase harus sesuai dengan sistem suplai.

15. KVA CODE
Arus asut inrush dapat ditentukan dari name plate ini. Arus ini ditentukan sebagai suatu kode hurup yang menunjukkan daerah KVA/HP. Bata daerah untuk setiap hurup ditentukan pada NEAM MG-1-10.36. Harga umum adalah 6, yang mencakup suatu daerah 5.6 HP keatas tetapi tidak termasuk 6.3 KVA/HP.

16. DESIGN
Bilamana diterapkan, NEMA design letter ditempel pada name plate. Hurup ini menentukan harga-harga torsi minimum pada locked rotor, pull-up dan breakdown speed dan maksimum inrush current, dan harga maksimum beban slip. harga-harga ini diberikan pada NEMA-MG-1, section 1.16 dan 1.17.

17. BEARINGS
Untuk motor-motor yang disuplai dengan antifriction bearing, bearing tersebut harus diidentifikasikan pada nameplate, dengan menempelkan nomor urut dan huruf per AFBMA (Antifriction Bearing Manufacturer Association).

18. PHASE SEQUENCE
Memasukkan tanda phase sequence (urutan fasa) pada nameplate agar pemasang motor mudah menghubungkan motor ke power suplai sesuai dengan rancangan rotasinya.

19. EFFICIENCY
Nameplate dilengkapi dengan tanda nominal efficiency yang sesuai dengan table 12-4 dari MG-1-12.53b. Efisiensi data tersedia untuk motor-motor standar.

20. LOW NOISE
Beberapa motor dirancang untuk emisi noise yang rendah. Oleh sebab itu, level noise yang diberikan pada nameplate menyatakan sound power and sound pressure. Keduanya diukur dalam dBA. Ini berarti output bunyi dari motor.

Wednesday, November 25, 2009

Tinjauan Singkat Pengaman Motor Listrik

U M U M.
Baik industri berskala besar maupun kecil, di dalam menunjang kegiatan operasi biasanya menggunakan motor-motor listrik. Motor tersebut berfungsi sebagai penggerak mula peralatan seperti :
- kipas (fan).
- kompresor.
- konveyor.
- eskalator.
- pompa.
- pengaduk (mixer).
- dan lain-lain.
Dipilihnya motor-motor listrik sebagai penggerak peralatan tersebut di atas karena mempunyai banyak kemudahan-kemudahan jika dibandingkan dengan mesin penggerak lainnya. Jenis motor listrik yang paling banyak digunakan adalah motor induksi. Untuk mendapatkan unjuk kerja yang baik, maka para pemakai diharapkan selain memahami karakteristik motor, juga memahami rangkaian kendali dan sistem operasi motor tersebut.

KOMPONEN-KOMPONEN MOTOR LISTRIK.
Dua komponen penting pada motor induksi adalah stator dan rotor. Rotor terdiri dari susunan lempengan-lempengan baja tipis, penghantar rotor sangkar (squirel cage), cincin ujung dan kipas pendingin yang dipasang pada poros rotor.
Stator juga dibuat dari lempengan-lempengan baja tipis yang dipasang pada rangka mesin, di mana bagian dalam diameter stator dibuat alur-alur yang berfungsi untuk menempatkan kumparan. Kumparan-kumparan tersebut dipasang sedemikian rupa, sehingga apabila suatu tegangan suplai arus bolak-balik diterapkan pada terminal motor, maka stator akan menimbulkan medan magnit putar.
Medan magnit putar ini akan memotong penghantar rotor, selanjutnya pada penghantar rotor akan terinduksikan tegangan yang akan menimbulkan medan magnit rotor. Medan magnit putar rotor akan berusaha mengimbangi medan magnit putar stator. Namun medan magnit putar rotor tidak akan sama dengan medan magnit stator. Medan magnit putar rotor akan sedikit terbelakang dari medan magnit stator, hal ini yang dikatakan adanya slip.

PUTARAN MOTOR INDUKSI.
Putaran rotor motor tentunya diharapkan mempunyai putaran yang sesuai dengan kondisi kerjanya. Putaran motor induksi sebenarnya sangat tergantung pada frekwensi tegangan suplai dan jumlah kutub motor. Dari rumus berikut ini dapat diketahui hubungannya.
N = F/P
di mana : N = putaran permenit.
F = frekwensi (hertz).
P = jumlah pasang kutub.
Sebagai contoh, sebuah motor yang mempunyai jumlah kutub 2, frekwensi tegangan suplai 50 Hz, maka motor akan mempunyai kecepatan putar sebesar 3000 rpm. Sedangkan sebuah motor yang mempunyai jumlah kutub 4 akan mempunyai putaran 1500 rpm. Sebenarnya kecepatan putar motor tidak tepat 3000 rpm atau 1500 rpm, hal ini disebabkan adanya slip. Jadi, kecepatan putar sebenarnya dari motor akan sedikit lebih kecil dari yang disebutkan di atas.

PENGASUTAN MOTOR.
Operasi pengasutan motor secara manual biasanya dilakukan dengan menekan tombol start. Ada bermacam-macam cara pengasutan motor misalnya.
a. Pengasutan dengan tegangan penuh.
b. Pengasutan dengan tegangan yang dikurangi.
c. Pengasutan segi-tiga bintang.
d. Pengasutan dengan perubahan frekuensi.
e. Pengasutan dengan perubahan frekuensi dan tegangan.
f. Pengasutan dengan perubahan jumlah kutub.
Semua cara yang disebutkan di atas dimaksudkan untuk mendapatkan arus asut dan torsi yang memadai dan tidak berbahaya terhadap sistem atau motor itu sendiri. Mengasut motor dengan tegangan yang dikurangi, berarti mengurangi besar torsi asut. Demikian sebaliknya mengasut motor dengan tegangan penuh akan menimbulkan arus asut (starting current) yang sangat besar. Untuk mendapatkan titik temu dari kedua keadaan tersebut, maka perlu dipertimbangkan situasi operasi yang diharapkan antara lain mempertimbangkan sampai sejauh mana pengaruh arus inrush atau arus asut terhadap peralatan dan sistem, demikian juga dengan pengaruh berkurangnya torsi.

Operasi pengasutan secara otomatis biasanya dilakukan oleh alat-alat bantu seperti :
a. alat pengindera temperatur.
b. alat pengindera tekanan.
c. alat pengindera cairan (liquid).
d. alat pengindera aliran.
e. alat pengindera kandungan gas.
f. timer.
g. saklar batas (limit switch).

Alat-alat tersebut di atas mampu menditeksi keadaan operasi suatu sistem. Apabila batas penyetelannya tercapai, maka motor mulai bekerja atau berhenti tergantung pada rangkaian kontrol yang dibuat. Jadi motor dapat diasut apabila menerima isyarat dari peralatan bantu. Isyarat dari alat bantu ada yang langsung dihubungkan kerangkaian kendali dan ada yang menggunakan rele bantu, bahkan ada yang menggunakan rangkaian elektronik.


GANGGUAN PADA MOTOR.
Motor-motor yang sedang dioperasikan dapat mengalami gangguan, akibat gangguan dapat menyebabkan kerusakan pada motor. Umumnya kerusakan motor dapat disebabkan oleh beberapa keadaan seperti :
a. lingkungan yang tidak sesuai.
b. pemilihan motor yang tidak tepat.
c. instalasi yang salah.
d. gangguan mekanis.
e. perubahan besaran listrik yang diterapkan.
f. pemeliharaan yang tidak memadai.
g. prosedur pengoperasian yang salah.
h. kegagalan pelumas.
i. gabungan dari dua atau lebih permasalahan diatas.

Dengan adanya gangguan tersebut umur motor akan berkurang, yang lebih fatal lagi adalah kerugian yang diakibatkan oleh terhentinya kegiatan produksi. Biasanya untuk proses yang kritis dipasang dua buah motor, di mana salah satunya berfungsi sebagai motor cadangan.
Untuk mencegah terjadinya kerusakan yang fatal pada motor, maka keadaan gangguan yang disebutkan di atas harus dapat dicegah pengaruhnya. Langkah-langkah untuk itu biasanya sudah dilakukan pada saat perencanan atau perekayasaan motor dan instalasinya, misalnya dengan menentukan persyaratan-persyaratan lokasi, jenis motor, cara pengoperasian dan pemeliharaan yang baik, melengkapi peralatan pengaman dan lain-lain.

PERALATAN PENGAMAN.
Untuk mengetahui gejala terjadinya gangguan motor, maka dipasang peralatan penditeksi yang mampu merasakan keadaan tersebut, sebelum gejala tersebut berkembang menjadi gangguan yang membahayakan operasi produksi atau motor itu sendiri. Peralatan penditeksi tersebut memberikan isyarat pada peralatan pengaman, baik secara langsung maupun tidak langsung untuk memberikan tanda peringatan atau untuk melepaskan motor terhadap sumbernya.
Besaran-besaran yang diditeksi oleh alat ini ada yang merupakan besaran fisika seperti panas dan besaran listrik seperti tegangan, arus dan frekwensi atau gabungan dari tegangan dan arus. Penyimpangan besaran listrik terjadi karena :
a. gangguan hubung singkat pada lilitan motor.
b. gangguan pada rangkaian kendali.
c. pembebanan yang berlebihan.
d. jatuh tegangan yang terlampau besar.
e. urutan fasa terbalik.
f. fasa yang tidak seimbang.
g. gangguan pada alat yang digerakkan.
h. kombinasi dari keadaan di atas.

Jika jenis gangguan sudah dikenal, maka perlu diketahui peralatan penditeksi yang dapat digunakan untuk merasakan gangguan tersebut dan dapat mengirimkan isyarat ke peralatan pengaman atau rangkaian kontrol motor. Berikut ini adalah beberapa peralatan yang berfungsi untuk menditeksi dan mengamankan penyimpangan-penyimpangan yang terjadi.
a. Vibration probe yang berfungsi menditeksi getaran.
b. RTD yang berfungsi untuk menditeksi panas.
c. Trafo arus dan trafo-trafo tegangan.
d. Overload heater (menditeksi arus lebih untuk periode tertentu).
e. Over curent relay (rele arus lebih yang menditeksi arus lebih).
f. Undervoltage relay (rele tegangan kurang yang menditeksi tegangan kurang).
g. Negative phase sequence relay (rele urutan fasa negatif yang menditeksi arus urutan negatif).
h. Differential relay (yang menditeksi arus gangguan pada daerah pengamanannya saja).
i. Rele gangguan tanah (yang menditeksi gangguan fasa ke tanah).
j. Overload relay (pengaman beban lebih).
k. Pemutus tenaga (circuit breaker berfungsi untuk melepaskan atau menghubungkan motor ke sumbernya).
Umumnya skema rele pengaman menggunakan trafo arus atau trafo tegangan sebagai sumber penditeksi gangguan. Pada motor kecil biasanya hanya menggunakan pengaman panas beban lebih (over load heater) saja, kecuali jika diinginkan lain.
Peralatan pengaman yang dipasang untuk bekerja terhadap salah satu gangguan dapat berfungsi terhadap gangguan lain, sebagai contoh pengaman lilitan. Isyarat untuk mengisolasikan motor yang terganggu terhadap sistem yang sehat diperoleh dari peralatan pengaman, yang kemudian dikirim kerangkaian kontrol. Rangkaian kontrol selanjutnya akan memberikan perintah untuk melepaskan magnetik kontroler atau pemutus tenaga. Pada sistem yang menggunakan pengaman sikring atau molded case circuit breaker (MCCB) akan bekerja atau mengamankan sistem hanya terhadap arus yang besar sekali yang hanya terjadi karena hubung singkat pada motor atau saluran.

PENGOPERASIAN DAN PEMELIHARAAN.
Salah satu penyebab kerusakan motor adalah pemeliharaan yang dilaksanakan tidak sesuai dengan anjuran atau persyaratan yang ditentukan oleh pembuatnya. Salah satu tindakan pemeliharaan yang baik adalah preventive maintenance, di mana pelaksanaannya dilakukan pada tenggang waktu tertentu. Tujuan melaksanakan kegiatan ini adalah untuk mengetahui sedini mungkin gejala-gejala kerusakkan dan melaksanakan perbaikan untuk mencegah terjadinya kerusakan yang fatal. Beberapa tindakan yang dilaksanakan dalam melakukan pemeliharaan antara lain.
a. pengujian.
b. pengukuran.
c. penggantian bagian yang rusak.
d. penyesuaian.
e. perbaikan.
f. membersihkan.
g. pelumasan.

Berikut ini adalah enam langkah program pemeli-haraan yang umum dilaksanakan.
a. membersihkan.
b. melumasi.
c. mengencangkan bagian yang kendur.
d. menginspeksi.
e. menguji.
f. mencatat.
Meskipun enam langkah program pemeliharaan sudah dilaksanakan dengan baik, tidak berarti motor listrik bebas terhadap gangguan. Karena pengoperasian yang tidak sesuai dengan prosedur yang dianjurkan dapat menyebabkan kerusakan motor baik secara bertahap maupun secara langsung. Untuk itu perlu diperhatikan prosedur pengoperasian motor yang baik.

PENGUJIAN TAHANAN ISOLASI SEBAGAI PERSIAPAN START-UP

UMUM
Sebelum mengoperasikan generator, beberapa pengecekan dasar dan kalibrasi harus dilakukan untuk menjamin bahwa semua komponen dalam keadaan baik. Jika pengoperasian dilakukan sebelum melakukan pengecekan ini ada kemungkinan operasi generator akan terganggu karena ada bagian yang tidak memenuhi kondisi operasi.
Pencegahan Moisture.
Semua lilitan dan bagian-bagian yang saling berhubungan dibuat dari bahan anti moisture dan anti jamur. Untuk mengetahui kondisi moisture memenuhi persyaratan maka dilakukan tindakan sebagai berikut:

Pengujian Isolasi
Lilitan stator dan rotor harus dijaga tetap hangat sejak pertama generator diterima sampai ditempatkan untuk dioperasikan. Dalam hal ini generator agar disimpan dengan surface heater harus tetap beroperasi secara kontinyu sampai generator tersebut dioperasikan.
Pengujian isolasi berikut ini agar dilakukan sebelum unit dioperasikan.
1. Pengujian tahanan isolasi
2. Pengujian Polarisasi Indeks
3. Pengujian tegangan lebih (hy-pot test).

Perhatian :
Semua peralatan penguji harus dibuat sebaik mungkin, terutama segi-segi keselamatan. Semua mesin yang akan diuji harus dalam keadaan de-energize dan ditanahkan untuk sementara untuk menghilangkan muatan sisi yang tertinggal di dalam lilitan.

PENGUJIAN TAHANAN ISOLASI.
Pengujian ini dilakukan untuk mendeteksi adanya kelemahan isolasi tahanan. Pengujian isolasi secara rutin dapat dilakukan dengan menggunakan Megohmmeter, atau megger yang pembacaannya langsung dalam meghoms.
Tahanan isolasi adalah ukuran kebocoran arus yang melalui isolasi. Tahanan berubah-ubah karena pengaruh temperatur dan lamanya tegangan yang diterapkan pada lilitan tersebut, oleh karena itu faktor-faktor tersebut harus dicatat pada waktu pengujian. Tegangan yang diterapkan kalau bisa hanya pada satu fasa saja. Nilai tegangan minimum pengujian yang banyak digunakan dan diterima dikalangan praktisi adalah satu kilovolt sebanding dengan satu (1) megaohm terhadap peralatan listrik yang banyak digunakan pada industri-industri (untuk lilitan stator), dan satu (1) megaohm untuk lilitan rotor setelah dikenai tegangan 500 volt dc selama satu menit. Generator-generator turbin hampir selalu mempunyai nilai lebih tinggi. Tegangan 500 volt dc untuk pengujian ini harus dilakukan terlebih dahulu sebelum pengujian tegangan yang lebih tinggi dilakukan.
Nilai tahanan diatas merupakan nilai minimum yang menunjukkan bahwa keadaan lilitan masih baik, nilai tahanan yang rendah dapat menunjukkan lilitan dalam keadaan kotor atau basah. Moisture dapat juga terdapat pada permukaan isolasi, atau pada lilitan atau pada keduanya.
Oleh sebab itu, pengujian dengan megger sebelum dan sesudah mesin dibersihkan harus dilakukan. Jika nilai tahanan tetap rendah dan lilitan relatif bersih, ada kemungkinan adanya moisture pada lilitan, dan lilitan harus dikeringkan sekurang-kurangnya sampai diperoleh tahanan minimum yang dianjurkan.

Pengujian Polarisasi Index.
Pengujian untuk menentukan keadaan isolasi yang baik adalah membandingkan hasil tahanan setelah pengujian tegangan selama 10 menit dengan tahanan pada saat satu menit pertama. Jika pengujian dilakukan sebelum dan sesudah mesin dibersihkan, dan atau sesudah mesin dikeringkan, akan menunjukkan hasil pengukuran yang lebih baik. Polarisasi index test merupakan petunjuk kekeringan dan kebersihan dari lilitan, dan hasilnya akan menentukan apakah peralatan aman untuk dioperasikan dan atau peralatan untuk dilakukan pengujian tegangan lebih.
Untuk stator, pengujian PI menggunakan tegangan 2,5 kV dc (tegangan rating generator 13.8 kV, 50 hz, 3 fasa). Jika PI adalah sama atau lebih besar dua (2), maka pengujian dengan tegangan 6 KV dc dapat dilakukan. PI untuk pengujian dengan 6 KV dc harus lebih besar atau sama dengan 2. Untuk rotor, tegangan 500 Vdc dapat digunakan tanpa melepaskan atau menghubung singkatkan diode. Jangan menggunakan tegangan lebih dari 500 V dc tanpa mengetahui hasil pengujian dengan tegangan 500 V dc. Jika digunakan tegangan yang lebih tinggi, diode harus dilepas. Tahanan rotor pada pengujian tahanan dengan menggunakan tegangan 500 V dc harus lebih dari 50 megohm dan PI untuk tegangan 500 V dc harus lebih besar dari dua (2). Tegangan maksimum yang diizinkan adalah 1500 V ac atau 2500 V dc.

Pengujian Tegangan Lebih.
Pengujian tegangan lebih dimaksudkan untuk menemukan kelemahan pada lilitan stator yang harus diperbaiki. Pengujian ini juga digunakan untuk meyakinkan bahwa lilitan mempunyai ketahanan dielektrik yang cocok untuk dioperasikan. Pengujian ini dapat dilakukan dengan menggunakan tegangan ac (50 hz) atau arus searah.
Tingkat tegangan yang diterapkan sangat tergantung pada tipe mesin, pelayanannya, isolasinya, dan pengalaman pemakai didalam pengujian tegangan tinggi. pengujian arus bolak-balik biasanya dilakukan dengan menggunakan tegangan sebesar 1,5 kali tegangan jala-jala. Sedangkan pengujian dengan tegangan arus searah kira-kira 1,7 kali pengujian AC atau sekitar 2,7 kali tegangan nominal jala-jala.
Perhatian :
Jangan lakukan pengujian jika mesin dalam keadaan kotor dan basah (tidak bersih dan tidak kering ).
Pengujian Step Voltage.
Pada pengujian ini, generator dilepaskan dari sistem pengendali dan semua peralatan bantunya, dan hubungkan alat penguji tegangan tinggi dc antara satu fasa lilitan generator dengan metal generator. Tegangan dinaikkan selangkah demi selangkah dan arus bocor dapat kita baca dan data tersebut dicatat.
Arus yang terbaca pertama kali sebelum arus menjadi stabil yang merupakan arus bocor yang dapat dinyatakan arus sebagai fungsi waktu terdiri dari tiga komponen yaitu :
1. Arus pengisian pada lilitan terhadap kapasitas tanah. Arus ini dengan cepat turun dari maksimum menjadi nol.
2. Arus absorsi pada pergeseran molekul pengisian pada dielektrik. Arus peralihan ini akan berkurang dengan waktu yang sangat lambat untuk menjadi nol.
3. Arus bocor yang merupakan arus penghantar sebenarnya dari dielektrik, arus bocor akan berubah-ubah tergantung tegangan yang diterapkan. Arus ini dapat juga terdiri dari arus bocor permukaan.
Pada pengujian ini, temperatur, kelembaban, dan keadaan sekelilingnya harus dicatat. Penghantar penguji harus berukuran 12 AWG atau lebih, dan diatur agar bebas dari pengaruh kehilangan (kerugian) korona. Semua peralatan bantu seperti penditeksi temperatur, lilitan fasa yang tidak diuji, dan lilitan rotor harus ditanahkan sebelum dilakukan pengujian. Hal ini perlu, karena setelah pengujian pengisian dapat dilepaskan dengan aman.
Terapkan tegangan 10 kV pada saat mulai melakukan pengujian dan naikkan setiap tingkat sampai tercapai nilai tegangan 2.7 kali tegangan jala-jala. Tahanan isolasi dapat dihitung pada setiap tingkat dengan menggunakan hukum ohm.
Tahanan isolasi (megOhm) = tegangan pengujian/ arus bocor.
Arus bocor yang terbaca biasanya dalam mikro amper.

Pengeringan Lilitan
Jika nilai pengujian rendah dan lilitan relatif bersih, maka lilitan harus dikeringkan sampai sekurang-kurangnya diperoleh nilai minimum yang dianjurkan. Pengeringan dapat dilakukan dengan pemanasan luar atau pemanasan dalam. Cara yang dipilih sangat tergantung dari kemudahan, ketersediaan dan biaya. Panas yang cukup harus bisa dihasilkan untuk mendapatkan temperatur pada ujung lilitan 75oC. Kemampuan kenaikan temperatur harus dimulai dari rendah untuk menghindari terbentuknya uap atau gas yang berlebihan tekanannya dan hal ini dapat merusak isolasi.
Pemanasan Dari Luar
Biasanya generator dilengkapi dengan pemanas listrik. Alat ini ditempatkan pada bagian bawah mesin dan terbuka lebar hal ini dimaksudkan agar pemanasan pada mesin dapat menyebar keseluruh bagian mesin, tentunya hal ini harus dibantu dengan sirkulasi yang memadai selama pemanasan untuk menjamin pekerjaan yang menyeluruh dan sempurna.

Pemanasan Dari Dalam
Pemanasan dengan menggunakan sirkulasi arus pada lilitan adalah hal yang paling baik untuk lilitan medan. Cara ini juga dapat dilakukan pada lilitan stator, tetapi perhatian yang cermat harus dilakukan didalam pengendalian arus searah yang digunakan untuk menghindari kerusakan pada komponen-komponen mesin.
Untuk stator dapat juga dipanaskan dengan menggunakan sirkulasi arus searah yang diperoleh dari penguat terpisah atau menggunakan mesin las. Kemampuan kenaikan temperatur harus mendapat perhatian khusus untuk menghindari panas dibagian dalam terlalu tinggi. Hasil pengeringan harus diperiksa dengan maksud untuk mengetahui tahanan isolasi. Pada permulaan penerapan panas, tahanan isolasi akan jatuh, tetapi akan naik dan akhirnya tetap sebagai hasil pemanasan.

Pemerikasaan Isolasi Bearing
Variasi pada rangkaian magnit generator dapat menyebabkan perubahan yang periodik pada jumlah fluksi yang tersalurkan ke poros. Perubahan fluksi ini dapat membangkitkan tegangan yang cukup untuk arus bersirkulasi yang melalui poros, bearing dan rangka. Jika arus ini dibiarkan mengalir, akan menimbulkan pengaruh yang berbahaya pada journal dan bearing. Untuk menghilangkan arus ini, bearing harus diisolasi. Pada mesin type bracket bearing diisolasi antara mounting ringnya dan rumah bearing. Hal yang perlu diperhatikan adalah mengisolasi setiap peralatan deteksi seperti probe temperatur, yang berhubungan dengan bearing.
Adalah sangat sulit sekali memeriksa isolasi bearing ini. Pengukuran yang bisa dilakukan adalah memasang megger 500 volt pada bearing dan bracket bearing. Pembacaan 0.1 megohm atau lebih besar memperlihatkan bahwa isolasi bearing sudah memadai.

Pendektesi Kebocoran Bahan Pendingin.
Pendektesi kebocoran bahan pendingin (pengindera kelembaban) ditempatkan pada saluran udara dingin setiap pendingin. Masing-masing pengindera dihubungkan kerele yang akan mentripkan sistem apabila nilai penyetelan rele dilampaui. Pengindera kelembaban tidak memerlukan perawatan selama kurang lebih dua tahun, kecuali jika elemennya terlalu kotor maka perlu dibersihkan, alat ini masih dapat bekerja dengan baik walaupun pada permukaannya terdapat debu.

Proteksi Generator

PENDAHULUAN

Mesin-mesin dengan rancangan terbaru pada umumnya jarang sekali mengalami gangguan, hal ini disebabkan karena adanya penggunaan bahan-bahan bermutu tinggi, teknis pengerjaan dan pengendalian mutu yang lebih baik, jika dibanding dengan mesin-mesin buatan terdahulu. Walaupun demikian kemungkinan terjadinya gangguan tidak dapat dihindarkan. Gangguan dapat menyebabkan kerusakan pada mesin yang sedang dioperasikan dan biasanya akan diikuti dengan pemutusan suplai. Mengingat generator merupakan peralatan yang penting dan nilainya juga cukup mahal (biaya penggantian maupun perbaikan mesin lama) maka diusahakan pengaruh gangguan dibatasi sampai sekecil mungkin. Antara lain dengan menditeksi keadaan gangguan secara tepat dan mengisolasikan mesin terhadap sistem yang sehat secara cepat.

Gangguan pada generator antara lain dapat disebabkan oleh:
a. Hubung singkat (short-circuit) pada lilitan stator.
b. Beban lebih (overload).
c. Panas lebih (overheating) pada lilitan dan bearing.
d. Tegangan lebih (overvoltage) dan kecepatan lebih.
e. Kehilangan medan penguat (loss of field).
f. Daya balik (motoring).
g. Arus tidak seimbang (unbalance current) pada stator.
h. Out of step.

Sebagian besar gangguan di atas perlu dihilangkan dengan cara melepaskan generator terhadap sistem melalui pemutus tenaga utama (main circuit breaker) dan bila memungkinkan melepas pemutus tenaga medan penguat. Untuk jenis gangguan tertentu selain cara di atas, mesin penggerak dihentikan beroperasi. Bila terjadi gangguan yang masih pada batas yang diizinkan biasanya sistem hanya memberikan peringatan saja.
Menentukan tindakan seperti yang disebutkan di atas harus dilakukan secara cermat dan hati-hati, karena kesalahan dalam menentukan dapat mempengaruhi tingkat pelayanan yang baik. Keadaan tersebut dapat dicapai dengan :

a. Memilih jenis rele yang sesuai dengan jenis gangguan yang mungkin timbul.
b. Mengkoordinasi penyetelan rele yang satu dengan yang lainnya.
c. Mempertimbangkan segi produksi, pemeliharaan generator dan pemeliharaan peralatan pengamannya.
d. Mengadakan tenaga-tenaga operator dan teknisi pemeliharaan yang memadai.
Apabila keempat faktor di atas dapat dipenuhi maka diharapkan kelangsungan pengoperasian dapat berjalan dengan lancar.


GANGGUAN PADA LILITAN STATOR.

Gangguan pada lilitan stator dapat diklasifikasikan sebagai gangguan hubung singkat fasa ke fasa, hubung singkat fasa dengan tanah, hubung singkat antara lilitan dengan lilitan pada fasa yang sama dan rangkaian terbuka. Kegagalan isolasi lilitan dapat disebabkan oleh tegangan lebih, menurunnya ketahanan dielektrik, atau kombinasi keduanya. Tegangan lebih dapat disebabkan oleh switching transient, petir, atau gabungan kecepatan lebih dengan beban hilang yang mendadak. Menurunnya ketahanan dielektrik dapat disebabkan oleh penuaan, panas pada isolasi, pengumpulan kotoran, korona, kelembaban, pemeliharaan yang salah, adanya benda asing yang masuk kedalam isolasi misalnya seperti kipas (fan) yang patah dan menghantam lilitan atau air sistem pendingin stator bocor. Jika kerusakan isolasi lilitan dapat dicegah sebelum laminasi rusak, maka perbaikan masih dapat dilakukan dengan mengganti kumparan yang rusak, akan tetapi jika laminasi pada inti besi yang rusak, perbaikan yang dilakukan sudah tidak efisien lagi. Oleh sebab itu sedapat mungkin gangguan harus dihilangkan sebelum timbul kebakaran yang biasanya dapat merusak laminasi inti. Untuk mendapatkan pengaman yang baik maka dianjurkan agar menggunakan rele diferensial generator.

Hubung singkat fasa ke fasa.
Untuk mengamankan masing-masing lilitan fasa generator dapat menggunakan rele arus lebih yang dihubung diferensial. Rele diferensial arus ini dapat menggunakan rele arus lebih yang sederhana atau yang dilengkapi dengan pelambatan waktu, atau dapat juga menggunakan rele diferensial persentase dengan restrain yang linier atau yang dapat berubah. Untuk mendapatkan rele diferensial dengan kepekaan yang maksimum, maka trafo arus yang digunakan pada masing-masing ujung harus benar-benar sama. Meskipun hal ini sudah dilakukan, pengamanan diferensial yang menggunakan rele arus lebih masih mempunyai keterbatasan terhadap kesalahan kerja yang disebabkan arus gangguan luar yang sangat besar.
Saat sekarang pengaman yang lebih umum digunakan adalah rele diferensial persentase dengan restrain yang linier dan hasilnya ternyata cukup memuaskan. Rele ini mempunyai arus kerja minimum yang sangat kecil, misalnya sebesar 0,1A. Arus ini mengalir pada kumparan kerja dan rele akan bekerja apabila arus restrain sama dengan nol. Mengenai daerah kerja rele ini dapat dilihat pada kurva karakteristik yang biasanya diberikan pada saat pembelian rele. Waktu tunda pemutusan yang ada pada rele ini umumnya sangat singkat, berkisar antara 3 sampai 5 cycle untuk kumparan yang dirancang untuk sistem 60 hertz. Pada rangkaian rele diferensial seperti disebut di atas diusahakan tidak ada burden lain, selain burden rele diferensial, kalaupun ada burden tersebut harus sekecil mungkin.
Jika pada rangkaian trafo arus ada peralatan lain selain burden rele diferensial maka dianjurkan agar menggunakan rele diferensial persentase yang variabel karena kalau menggunakan rele diferensial persentase yang linier dapat menyebabkan kesalahan kerja sehubungan dengan adanya burden lain yang mempengaruhi keseimbangan sistem pengaman tersebut.

Hubung Singkat Fasa dengan Fasa.
Generator-generator tegangan tinggi biasanya dihubung bintang dengan titik netralnya dapat ditanahkan secara langsung atau melalui impedansi atau sama sekali tidak ditanahkan. Penggunaan impedansi pada suatu sistem pentanahan dimaksudkan untuk membatasi arus hubung singkat ketanah agar tidak lebih besar dari arus hubung singkat tiga fasa. Umumnya lilitan generator diharapkan tidak tahan terhadap arus lebih yang lebih besar dari arus hubung singkat tiga fasa. Tingkat daya guna rele diferensial terhadap arus gangguan tanah tergantung terhadap besar arus gangguan tanah yang timbul. Bila sistem yang ditanahkan dengan impedansi rendah, biasanya arus gangguan tanah yang terjadi besar dan diharapkan rele dapat bekerja dengan baik kecuali jika terjadi gangguan pada sebagian kecil lilitan yang dekat dengan titik netral. Demikian sebaliknya jika generator ditanahkan dengan impedansi tinggi maka arus gangguan tanah yang terjadi cukup kecil dan biasanya rele diharapkan tidak bekerja. Untuk mengamankan gangguan ini maka digunakan rele lain. Penggunaan rele diferensial pada sistem yang ditanahkan dengan tahanan tinggi menyebabkan kepekaan rele terhadap gangguan tanah sangat rendah.
Untuk mendapatkan pengaman diferensial yang maksimum maka impedansi pentanahan harus rendah. Untuk generator yang dioperasikan paralel dengan generator lain yang letaknya berdekatan ataupun yang berjauhan sedapat mungkin menggunakan rele diferensial yang terpisah. Selain itu juga untuk pengaman gangguan tanah yang dipasang pada generator harus mempunyai trafo arus yang terpisah dengan trafo arus diferensial. Pengaman diferensial umumnya dipasang pada generator dengan kapasitas 5.000 kVA yang bekerja pada tegangan 2300 kV ke atas, tetapi dapat juga diterapkan pada generator dengan kapasitas 1000 kVA ke atas. Daerah pengaman rele diferensial dianjurkan mencakup feeder generator breaker dan titik netral. Pada saat rele diferensial bekerja, diharapkan dapat memberikan isyarat pada rangkaian kontrol untuk melepaskan pemutus tenaga generator, pemutus tenaga netral dan pemutus tenaga medan penguat secara cepat. Untuk mendapatkan maksud tersebut maka sistem pengaman dilengkapi dengan rele lock-out (device 86G).
Ada beberapa perbedaan pendapat mengenai pembukaan pemutus tenaga netral bersamaan dengan pemutus tenaga utama dan pemutus tenaga medan penguat. Jika generator diamankan terhadap surja hubung (switching surge) ada sedikit alasan agar pemutus tenaga utama yang terbuka lebih dahulu. Andaikata pemutus tenaga secara bersamaan terbuka maka tidak ada permasalahan. Akan tetapi jika pemutus tenaga netral lebih cepat sedikit saja dari yang lain ada kemungkinan akan timbul tegangan transient.

Hubung Singkat Antar Lilitan Pada Fasa Yang Sama.
Walaupun rele diferensial dapat menditeksi gangguan hubung singkat antar fasa hampir pada semua lilitan generator tetapi rele ini tidak dapat menditeksi gangguan hubung singkat antar lilitan pada fasa yang sama. Bermacam-macam skema pengaman telah dibuat namun umumnya tidak praktis dan terbatas pada konstruksi generator itu sendiri. Untuk generator yang mempunyai lilitan tunggal (single layer) hubung singkat antar lilitan pada fasa yang sama tidak akan terjadi tanpa mengikut sertakan gangguan hubung tanah. Umumnya pengaman gangguan ini jarang sekali digunakan dalam praktek.

Rangkaian Terbuka Pada Lilitan.
Kejadian rangkaian terbuka pada generator modern adalah hal yang sulit terjadi karena bentuk fisik penghantar dan pelindung khusus yang ada pada konstruksinya cukup kuat dan biasanya tidak diterapkan rele pengaman yang khusus untuk menditeksi rangkaian terbuka.

Panas Pada Stator.
Panas pada stator dapat disebabkan oleh arus lebih arus hubung singkat dan gangguan pada sistem pendingin. Untuk itu maka dianjurkan agar menggunakan alat penunjuk temperatur yang dapat dilengkapi dengan alat pencatat yang dipasang sedemikian rupa sehingga adanya gejala-gejala perubahan temperatur dapat diamati setiap saat.

(a). Arus Lebih.
Panas yang terjadi pada stator dapat disebabkan oleh arus lebih yang mengalir cukup lama yang tidak dapat diditeksi oleh rele arus dengan penunda waktu biasa. Umumnya alat penunjuk temperatur yang ada menggunakan alat perasa tahanan (resistance detector) atau thermocouple. Alat pencatat biasanya dilengkapi dengan pemberi isyarat peringatan dini. Generator-generator besar biasanya tidak diharapkan berhenti beroperasi karena peralatan temperatur ini. Untuk mendapatkan hasil pengamatan yang dapat mewakili semua bagian generator maka jumlah resistance detector yang dipasang harus memadai pula.
(b). Hubung singkat pada laminasi.
Panas pada stator dapat disebabkan oleh kerusakan isolasi pada baut inti. Baut ini berfungsi untuk membentuk kesatuan laminasi yang satu dengan yang lainnya. Panas dapat juga disebabkan oleh tidak ratanya pelapisan isolasi furnish pada beberapa bagian yang berlubang dan biasanya panas ini hanya terjadi pada satu tempat yang sulit diteksi oleh alat perasa temperatur jika letaknya cukup jauh.

(c). Kegagalan Pada sistem pendingin.
Panas lebih pada mesin dapat terjadi karena gangguan pada sistem pendingin misalnya seperti adanya penumpukan kotoran pada kisi-kisi pendingin, saluran pendingin macet, saluran ventilasi tertutup atau kalaupun membuka pembukaannya tidak sempurna dan lain-lain. Untuk gangguan pada sistem pendingin diharapkan dapat diketahui dengan membandingkan udara atau hidrogen yang keluar dari mesin dan udara yang masuk kedalam sistem. Jadi dalam hal ini alat penditeksi dipasang pada saluran udara masuk dan saluran udara keluar.


GANGGUAN PADA ROTOR
Gangguan pada rotor generator dapat diklasifikasikan sebagai gangguan hubung singkat pada lilitan rotor, lilitan rotor terbuka, hubung tanah pada lilitan medan dan panas lebih. Pada umumnya pemutusan medan penguat tidak dianjurkan.
Hubung Singkat Pada Lilitan Rotor.
Hubung singkat pada lilitan rotor tidak dapat diketahui oleh rele arus lebih jika gangguan tersebut terjadi pada beberapa lilitan saja atau pada satu kutub penguat generator putaran rendah. Selain itu juga generator tidak diharapkan melepaskan medan penguatnya jika terjadi gangguan tanpa melepaskan pemutus tenaga utamanya terlebih dahulu. Jika hal ini terjadi maka akan terinduksikan arus yang sangat besar pada rotor (lilitan medan). Berdasarkan alasan ini maka rele arus lebih tidak dianjurkan untuk dipasang pada medan penguat sebagai pengaman.
Jika lilitan pada salah satu kutub terhubung singkat maka akan terjadi ketidak seimbangan medan magnit yang dapat menimbulkan gaya mekanis dan getaran. Besar dari getaran (vibrasi) dapat diketahui pada alat penunjuk getaran yang biasanya dilengkapi dengan isyarat alarm atau isyarat penghentian operasi bilamana batas penyetelannya tercapai. Pada generator dengan jumlah kutub yang sedikit pengaruhnya sangat jelas terlihat.

Lilitan Rotor Terbuka.
Terbukanya rangkaian lilitan rotor dapat terjadi pada setiap jenis generator tetapi dalam prakteknya menunjukkan bahwa generator dengan kutub pendek yang dioperasikan pada putaran rendah yang lebih sering mengalami gangguan ini.

Gangguan Hubung Tanah Pada Rangkaian Medan.
Gangguan hubung tanah pada rangkaian medan tidak begitu berakibat terhadap rangkaian medan itu sendiri, tetapi keadaan ini menunjukkan adanya bagian isolasi yang lemah atau kegagalan mekanis. Cara untuk mengetahui keadaan gangguan hubung tanah dapat menggunakan cara yang sangat sederhana yaitu dengan menggunakan dua buah lampu yang dihubung seri pada terminal lilitan rotor dan titik tengah diantara kedua lampu tersebut ditanahkan. Untuk mendapatkan penginderaan yang lebih peka dapat menggunakan tahanan sebagai pengganti lampu dan menghubungkan titik tengah ketahah melalui sebuah rele.

Panas Lebih.
Panas lebih pada rotor dapat terjadi karena adanya arus lebih pada rotor yang disebabkan oleh gangguan pada sistem ventilasi, single phasing atau operasi arus yang tidak seimbang pada stator. Selain dari itu panas pada rotor dapat disebabkan oleh arus medan lebih sebagai akibat dari gangguan pada rheostat dan gangguan pada pengaturan tegangan. Sehubungan dengan hal tersebut ada pendapat yang mengatakan bahwa rangkaian medan penguat agar dilengkapi dengan pengaman arus lebih. Meskipun kenaikan temperatur yang cukup kecil dapat diditeksi pada keluaran udara dari media pendingin tetapi ini tidak menjamin sumber panas berasal dari gangguan pada rotor mungkin saja dari bagian yang lain.
Terlepasnya salah satu fasa atau arus stator yang tidak seimbang dapat menimbulkan panas setempat yaitu pada permukaan kutub rotor selain itu juga akan timbul vibrasi yang dapat merusak pondasi mesin atau mesin itu sendiri. Pengaman keadaan tidak seimbang biasanya tidak dipasang di rotor tetapi pada feeder generator.




JENIS-JENIS PENGAMAN.



Pengaman Terhadap Daya Balik (ANSI DEV. 32).
Generator yang digerakkan oleh turbin uap apabila uapnya hilang, maka generator bekerja sebagai motor induksi dimana mesin seharusnya mensuplai tenaga. Dalam keadaan seperti ini generator menerima suplai tenaga listrik dari sistem. Untuk mencegah kerusakan akibat gangguan ini maka generator harus dilengkapi dengan rele daya arah yang peka. Fungsi dari rele ini diatur sedemikian rupa misalnya dapat memberikan isyarat peringatan dini atau memberikan isyarat pada rangkaian pemutus tenaga untuk melepaskan generator terhadap sistem. Untuk generator yang digerakkan oleh mesin diesel juga dapat menerapkan rele ini.

Pengaman Terhadap Kehilangan Medan Penguat (DEV. 40).
Bilamana generator yang sedang dibebani medan penguatnya hilang maka kopling magnit antara rotor dan stator menjadi lemah dan putaran rotor akan mendahului medan magnit stator, sistem kehilangan sinkronisasi. Bila keadaan ini dibiarkan berlangsung dapat membahayakan operasi generator dan sistem. Generator akan bekerja sebagai generator induksi, di mana akan timbul arus sirkulasi yang sangat besar pada permukaan rotor, khususnya pada bagian ujung dan ini dapat menimbulkan panas yang berbahaya pada daerah setempat dan pada ujung lengkungan irisan alur metal. Tegangan induksi atau arus induksi akan timbul pada lilitan medan yang tergantung pada apakah lilitan itu terhubung singkat sempurna atau terbuka. Arus sirkulasi ini akan menimbulkan panas dan dapat merusak rotor.
Untuk kehilangan medan penguat yang sempurna pada generator besar yang tidak dilengkapi dengan pengatur tegangan otomatis dapat menyebabkan penurunan tegangan sampai batas yang serius yang dicapai tidak lebih dari 10 sampai 15 detik. Dan apabila generator tersebut mewakili sebagian besar pembangkitan daya tegangan rendah yang serius dapat dicapai dalam waktu kurang dari satu detik.
Pengaman kehilangan medan telah dikembangkan untuk dapat melindungi generator terhadap kehilangan medan sebagian atau seluruhnya. Untuk menghindari kesalahan pemutusan akibat adanya surja sesaat maka perlu menerapkan penunda waktu yang mungkin ada pada rele itu sendiri atau dengan memasang rele penunda waktu bantu. Jika pengaman kehilangan medan dimaksudkan sebagai pengaman utama sistem dan generator, rele tegangan kurang dapat diterapkan pada skema untuk mengendalikan pemutusan, tetapi tidak mudah menentukan nilai penyetelan rele yang mampu menjaga sistem dan generator terhadap kerusakan. Pengaman kehilangan medan penguat dapat diterapkan apabila salah satu atau lebih keadaan berikut ini terpenuhi.
(a). Jika generator tidak dilengkapi dengan pengatur tegangan otomatis.
(b). Salah satu generator yang dioperasikan paralel lebih besar dari lainnya.
(c). Generator mempunyai hubungan listrik yang mudah sekali terlepas.
Salah satu usaha yang dilakukan untuk mencegah pengaruh kehilangan medan pada saat pemutus tenaga generator tertutup yaitu dengan memasang sistem interlock. Dengan menggunakan interlock setiap pemutusan medan penguat akan diikuti dengan pemutusan pemutus tenaga generator pada saat pengoperasian.

Out of step.
Suatu generator yang dioperasikan dapat mengalami out of step yang merupakan permasalahan pokok yang dapat menyebabkan kerusakan poros kopling atau pasangan stator.

Tegangan Lebih.
Pengaman tegangan lebih dianjurkan untuk diterapkan pada generator yang digerakkan oleh tenaga air di mana permasalahan utamanya adalah terjadinya kecepatan lebih (over speed) sebagai akibat terlepasnya beban besar secara mendadak. Tegangan lebih dapat juga disebabkan oleh kerusakan pada pengatur tegangan otomatis (AVR). Rele tegangan lebih dapat dipasang dengan menyisipkan tahanan pada penguat atau pada rangkaian medan generator untuk mengoperasikan alarm atau menghentikan operasi mesin yang sesuai dengan persyaratan yang telah ditentukan.

Kecepatan lebih.
Penggerak mula generator dapat mengalami kecepatan lebih (overspeed) dalam keadaan kerja yang tidak normal, untuk itu maka generator harus dilengkapi dengan pengaman kecepatan lebih. Alat ini dapat digabungkan dengan sistem governor penggerak mula atau dapat juga menggunakan sentrifugal device. Jika peralatan pengaman kecepatan lebih mekanis tidak dipasang maka rele frekwensi harus digunakan. Pada generator turbin kapasitas besar mempunyai pengaman kecepatan lebih yang dapat mentripkan throtle valve jika kecepatan normal terlampaui sekitar 10%. Sedangkan penggerak mula tenaga air kecepatan lebihnya dapat mencapai sekitar 220% dari kecepatan normalnya.

Pengoperasian mesin dengan satu fasa terbuka.
Pengoperasian generator dengan salah satu fasa terbuka dapat menimbulkan panas setempat pada permukaan rotor dan menimbulkan getaran pada mesin. Keadaan pembebanan dengan satu fasa terbuka dapat diketahui dengan membandingkan besar arus pada masing-masing fasa. Untuk pengamanan dapat digunakan rele keseimbangan arus atau rele urutan fasa negatif. Masing-masing pengaman tersebut diharapkan mempunyai pelambatan waktu yang dimaksudkan untuk mencegah kesalahan kerja karena adanya gangguan hubung singkat antara fasa ke fasa atau adanya beban transient yang tidak seimbang pada sistem yang kejadiannya sangat cepat sekali.

Gangguan pada isolasi bearing.
Untuk mencegah arus sirkulasi yang melalui bearing yang dapat menyebabkan kerusakan pada bearing yang diakibatkan oleh arus tersebut maka dipasang suatu bahan isolasi antara lempengan pelat dan bantalan main outboard mesin. Apabila isolasi ini rusak atau terjadi hubung singkat antara keduanya maka bearing akan mengalami cacat yang disebabkan oleh muatan listrik statis. Keadaan ini dapat diditeksi dengan menggunakan rele arus lebih yang salah satu terminalnya dihubung pada dudukan bearing dan yang sebuah lagi dihubungkan ke poros generator dengan menggunakan kontak sikat berisolasi. Lapisan minyak pada bearing dapat mencegah kumparan kerja rele hubung singkat.
Getaran (vibrasi).
Vibrasi dapat disebabkan oleh singlephasing atau ketidak seimbangan arus kerja dan ketidak seimbangan magnit pada rotor. Getaran yang berlebihan dapat diketahui oleh salah satu dari beberapa jenis peralatan penditeksi vibrasi yang dapat dipasang pada generator atau pada mesin penggerak mula.

Bahaya Kebakaran.
Mencegah generator terhadap bahaya kebakaran, biasanya menggunakan peralatan pemadam api yang diatur sedemikian rupa, yaitu dengan melepaskan air atau carbon dioxide ke lilitan. Penggunaan air sebagai pemadam api pada generator perlu dipertimbangkan. Carbon dioxide tidak menambah kerusakan akibat api, mengenai pelepasannya dapat diatur dengan menggunakan rele diferensial atau rele tanah. Jika hydrogen yang digunakan untuk mendinginkan mesin, pembakaran tidak akan didukung oleh hydrogen sekelilingnya, sehingga fasilitas pemadam kebakaran tidak perlu dipertimbangkan. Hydrogen yang bercampur dengan udara dapat membentuk campuran yang mudah meledak, tetapi kisi-kisi luar mesin pendingin hydrogen dirancang tahan terhadap intensitas ledakan maksimum yang dapat terjadi. Sistem pendingin hydrogen dimaksudkan untuk kemudahan menditeksi keberadaan pencemaran udara, air atau minyak.

Pengaman cadangan.
Penerapan rele cadangan pada prinsipnya sangat dianjurkan. Rele cadangan dapat dipertimbangkan sebagai rele yang dapat menghilangkan gangguan pada kejadian di mana pengaman utama gagal bekerja.
Pengaman cadangan yang dipasang pada generator dapat menditeksi sumber gangguan yang menuju generator jika pengaman utama gagal bekerja. Rele ini dapat juga bekerja melepaskan generator apabila terjadi hubung singkat ketanah pada saluran utama trafo distribusi atau bus jika peralatan yang dimaksudkan untuk mengaman peralatan tersebut gagal bekerja untuk menghilangkan gangguan. Pada umumnya, prinsip pengaman cadangan disetel sedikit kurang peka dan memerlukan waktu yang lebih lama dan melepaskan lebih banyak peralatan. Karena biaya pengadaan atau perbaikan mesin-mesin yang besar cukup mahal, maka penggunaan pengaman cadangan perlu mendapatkan perhatian khusus.

Kegagalan sistem pendingin.
Pelepasan panas pada stator dan rotor generator dilakukan dengan jalan memberikan sirkulasi udara atau hydrogen melalui bagian tersebut, di mana untuk sistem yang tertutup bahan pendingin dilewatkan pada lilitan heat exchanger. Selanjutnya bahan pendingin tersebut diditeksi terhadap kemungkinan adanya kandungan uap air. Sehubungan dengan penggunaan udara yang diambil dari luar maka udara tersebut harus memenuhi persyaratan untuk menghindari perubahan bentuk yang dapat menyebabkan kondensasi pada mesin bilamana humiditinya tinggi. Setiap kegagalan pada sistem pendinginnya akan mengakibatkan kenaikan temperatur pada stator. Cara penginderaan temperatur ini dijelaskan pada uraian pengaman stator.
Panas yang timbul pada bearing mesin besar dilepaskan dengan bantuan minyak pelumas yang didinginkan pada heat exchanger. Dengan dipasangnya peralatan pengindera pada bearing maka temperaturnya dapat diketahui. Bilamana perlu maka dapat dipasang rele temperatur yang dapat mentripkan mesin jika keadaan tersebut memang diharapkan.